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ABSTRACT

To improve the issue of excessive computational complexity in the single-step block
precise integration method for nonlinear rotor dynamics calculations, a novel sub-
block subdivision approach was introduced to refine Duhamel integration and inter-
nal point load estimation through fine-tuned matrix-vector operations. This method
effectively sidesteps redundant calculations involving zero and identity matrices by
precomputing and storing results corresponding to constant matrices. In preserving
the accuracy levels of the conventional algorithm, the refined approach has suc-
cessfully curtailed the computational workload by approximately 20%. The advanced
computational strategy was tested on a dual-disc rotor model to conduct a nonlinear
response calculation. The outcomes were benchmarked against results from the estab-
lished Newmark method, demonstrating efficacy and efficiency of the implemented
improvements. Additionally, distinct applicability scenarios of the two algorithms
were substantiated.

Keywords: Single step block method, Precise integration method, Subblock, Rotor dynamic
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INTRODUCTION

With escalating demands on the performance of aerospace engines, the role
of simulation-based predictive design methods has become increasingly vital
(Jianguo, 2018). It is of particular importance to leverage simulation pre-
dictions for dynamic response forecasting of aircraft engine rotor systems,
which typically involve a multitude of nonlinear elements and numerous
degrees of freedom, demanding numerical algorithms with high computa-
tional efficiency and accuracy. Owing to the high degrees of freedom and
significant nonlinearity in engineering models, challenges persist in the non-
linear response computation for rotor dynamics. The Newmark method is
hindered by low precision and the necessity for multiple iterations, result-
ing in extended computational time, while the Runge-Kutta method often
faces convergence issues. The precise integration algorithm, although offer-
ing computational accuracy and strong stability for solving homogeneous
equations, is problematic when addressing nonlinear issues — dimensional

© 2024. Published by AHFE Open Access. All rights reserved. 105

https://doi.org/10.54941/ahfe1005200


106 Jiaxuan and Dahai

augmentation (Suying et al., 2003) (Mingxiang et al., 2014) requires longi-
tudinal computation of exponential matrices at each time step; Taylor series
expansion of load terms (Weidong et al., 2004) (Guangtian et al., 2014) is
heavily step-size dependent for accuracy; and current numerical methods for
fitting Duhamel integral terms (Suying et al., 2011) (Jie et al., 2020) (Yong
et al., 2020) fail to concurrently satisfy high computational precision and
efficiency for nonlinear predictions. Moreover, rotor dynamics see limited
application of the precise integration method, with a deficit in comparative
computational results for rotor case studies.

This paper opts for a single-step block precise integration method with
enhanced computational accuracy over similar methods, incorporating it into
rotor dynamics calculation. Adaptations are proposed to manage high com-
putation demands, involving precomputing sub-blocks in each time step and
assembling the results in a simplified manner, and storing constant matrices
upfront to augment efficiency. With a dual-disc rotor example featuring a
squeeze film damper, this study benchmarks the computational accuracy and
efficiency across varying rotational speeds against the Newmarkmethod. The
finding furnish an engineering benchmark for employing precise integration
methods in simulation-based predictive modelling.

IMPROVED SINGLE STEP BLOCK PRECISE INTEGRATION METHOD

The dynamic differential equations of a rotor system can be represented as
follows:

Mẍ + (C− ωG)ẋ + Kx = fu(t) + fn(x,ẋ) (1)

Here, M,C,G,K represent the system’s mass, damping, gyroscopic, and
stiffness matrices of n dimensions, where n is the number of degrees of
freedom. is the rotor speed, fu (t) and fn(x, ẋ) represent the linear and non-
linear forces acting on the rotor system, and n-dimensional vectors x, ẋ, ẍ
correspond to displacement, velocity, and acceleration, respectively.

To address equation (1), transformation matrices are introduced to reduce
the second-order differential equation to a set of first-order motion equations
within the Hamiltonian framework:

v̇ = Hv + r

v =
[
x
ẋ

]
(2)


H =

[
0 I

−M−1K −M−1(C−wG)

]
r =

(
0
F

)
F =M−1fu(t) +M−1fn(x,ẋ)

(3)

Where H is a 2n-dimensional transfer matrix, r is a 2n-dimensional load
vector. The solution within an integration time step for equation (2) can be
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obtained as follows:

vk + 1 = eH1tvk +
∫ tk + 1

tk
eH(tk + 1−τ )r(τ , v)dτ (4)

The first term’s exponential matrix is obtained through a precise calcula-
tion method (Wanxie, 1994).

eH
1t
= (e(H1t/2

N))2
N
= (eH

τ
)2

N
(5)

The Padé approximation is used instead of the Taylor expansion to
improve the accuracy and stability of the algorithm. Here, q = p is taken,
where p is the order of expansion; this paper chooses p = 4 and N = 20
(Mengfu, 2006).

The exponential matrix is expanded using the Padé series as follows.{
eHτ = I + T0
T0 = (I + Ds)−1(Ns −Ds)

(6)

The matrices Ds and Ns are expressed as follows.

{
Ns =

∑p
k = 1

(2p−k)!p!
(2p)!k!(p−k)! (Hτ )

k

Ds =
∑p

k = 1
(2p−k)!p!

(2p)!k!(p−k)! (−Hτ )
k

(7)

Once T0 is calculated, the final result is obtained through the following
two formulas. {

Ti = 2Ti−1 + Ti−1 · Ti−1(i = 1, 2, ...N)
T = I + TN

(8)

T is thus the desired final exponential matrixeH
·1t

.
For the numerical calculation of the second term, the Duhamel inte-

gral term, the literature (Dongbing et al., 2022) applies the Chebyshev-
Gauss-Lobato grid on an implicit single-step block method and uses the
Runge-Kutta method to predict the internal point loads, with the following
computational formula.∫ tk + 1

tk
eH(tk + 1−τ )r(τ , v)dτ =

1t
[ 1

18T1r(tk, ṽ k) +
4
9T2r(tk + 1/4, ṽk + 1/4)

+
4
9T3r(tk + 3/4, ṽk + 3/4) +

1
18r(tk + 1, ṽk + 1)

]
(9)
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For each internal point of integration, the expression is as follows:

ṽk + i/4 =

[̃
xk + i/4˜̇xk + i/4

]
i = 1, 3, 4 (10)

The calculation processT · ris improved as follows:

T =
[
T11 T12
T21 T22

]
r =

[
0

M−1F

]
T · r =

[
T12M−1 · F
T22M−1 · F

] (11)

At the same time, by using the fourth-order explicit Runge-Kutta method,
the predicted values of the internal points of integration can be obtained, thus
obtaining the corresponding r and rendering the implicit method explicit.

ṽk + i
4
= vk +

i1t
4
×

1
6
(S1 + 2S2 + 2S3 + S4) (12)

S1 = Hvk + r(tk, vk)
S2 = H(vk +

i1t
4 ×

1
2S1) +

r(tk +
i1t
4 ×

1
2 , vk +

i1t
4 ×

1
2S1)

S3 = H(vk +
i1t
4 ×

1
2S2) +

r(tk +
i1t
4 ×

1
2 , vk +

i1t
4 ×

1
2S2)

S4 = H(vk +
i1t
4 S3) +

r(tk +
i1t
4 , vk +

i1t
4 S3)

(13)

Improvements to the calculation results ofH · vare as follows:

H =
[

0 I
−M−1K −M−1C

]
v =

[
x
ẋ

]
H · v =

[
ẋ

−M−1K · x−M−1C · ẋ

] (14)

For steady-state response calculations, sub-blocks of the transfer matrixH
can be pre-stored outside of the loop, eliminating the need to compute them
in each iteration.

Modelling of the Dual-Disk Rotor System

As shown in Figure 1, the rotor systemmodel is established based on the finite
element method, discretizing the shaft into 8 segments and 9 nodes (retain-
ing the x and y directions’ 4 degrees of freedom at each node) amounting to
36 degrees of freedom. The discs are assumed to be rigid and represented by
concentrated mass elements. On the right side of the rotor is a squeeze film
damper (SFD) with a squirrel-cage elastic support, represented as in equa-
tion (15). A rigid support is used on the left side. Fox, Foy are the oil film
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forces in the horizontal and vertical directions, respectively; Fn, Ft are the
normal and tangential oil film forces, Kex, Key are the stiffness of the right
side’s squirrel-cage elastic support, Krx, Kry, Crx, Cry respectively represent
the stiffness and damping (damping taken as zero here) of the left side’s rigid
support.

Figure 1: Schematic diagram of rotor-SFD-bearing system.

Table 1. Parameter table of rotor structure.

Parameter Value

Shaft section L1/mm 26
Shaft section L2/mm 118
Shaft section L3/mm 69
Shaft diameter D/mm 33
Disk 1 mass m1/t 0.018745
Disk 1 diametral moment of inertia /t·mm2 96.6
Disk 1 polar moment of inertia/t·mm2 188.2
Disk 1 unbalance/t·mm 0.00026
Disk 2 mass m2/t 0.016098
Disk 2 diametral moment of inertia/t·mm2 72.1

Table 2. Parameter table of squeeze film damper.

Parameter Value

Oil film clearance C/mm 0.16
Oil film length L/mm 11
Oil film radius R/mm 67.5
Lubricating oil viscosity µ/mm 2
Static eccentricity ratio ε 0.2
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

Fn = −
µRL3

c3
·[

(erψ̇ cos γ − ėr sin γ )I2 + (erψ̇ sin γ + ėr cos γ )I1
]

Ft = −
µRL3

c3
·[

(erψ̇ cos γ − ėr sin γ )I3 + (erψ̇ sin γ + ėr cos γ )I2
]

Fox = 1√
x2 + y2

(xFn − yFt)

Foy = 1√
x2 + y2

(yFn + xFt)

(15)

Where I1, I2, I3 are Sommerfeld integrals related to parameters like whirling
angle, relative eccentricity, er =

√
(yrotor − yecc)2 + (xrotor − xecc)2 are

relative eccentricities, ψ = arctan
(
(yrotor − yecc)/(xrotor − xecc)

)
is the

journal whirling angle, ψ̇ is the journal’s whirling angular velocity, and
(xrotor, yrotor) is the actual journal location, while (xecc, yecc) is the static
eccentricity location of the journal, with the structural parameters are
shown in the Table 1. And other parameters in the figure as shown in
Table 2.

COMPARISON OF COMPUTATION ACCURACY FOR STEADY-STATE
RESPONSE OF ROTOR SYSTEM

Comparisons of the Newmark method at time steps of 1E-6, 5E-7, 4E-7,
2E-7, and 1E-7 showed that the results of the larger time steps gradually
approached those at 1E-7. However, further reducing the time step below 1E-
7 caused a significant accumulation of numerical errors, making the results
unreliable. Hence, the Newmark method at 1E-7 time step is considered as
the reference for precise values.With the convergence error set to 1E-6 for the
Newmark method at different time steps, and with the integration constants
and as 0.25 and 0.5 respectively, the error is defined as the mean relative
error of the x-direction displacement at disk 1 at several time points after the
rotor reaches a steady state when compared to the precise value. By taking
various rotational speeds as the horizontal axis coordinates and the logarith-
mic values of the relative error as the vertical axis coordinates, an error curve
is plotted as shown in Figure 2. Here, ‘precise1’ represents the single-step
block precise integration method, while ‘precise2’ represents the improved
single-step block precise integration method.

As shown, the improved single-step block precise integration method
maintains the same precision as the original algorithm. The relative error
shows the following trends: as the rotational speed increases, the accuracy
of the same time step Newmark method surpasses the single-step block pre-
cise integration, but as the speed increases further, the error of the Newmark
method exhibits an increasing trend, while the precision gap between it and
the single-step block precise integration generally exhibits a decreasing trend.

Furthermore, the response results at specific rotational speeds are anal-
ysed in Figure 3. Within different rotational speed ranges of the working
speed, values at 5000r/min, 25000r/min, and 40000r/min are selected, taking
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Figure 2: Relative displacement error at different rotational speeds.

the x-direction response at disk 1 after reaching a steady state as the verti-
cal coordinate, and time duration as the horizontal coordinate for plotting
(due to the large number of integration points, only a part is shown in the
diagram). Still taking the results of the Newmark method with a 1E-7 time
step as precise values, because the improved single-step block precise integra-
tion method retains the original algorithm’s precision, the results before and
after the improvement of the single-step block precise integration method are
uniformly presented as ‘Precise.’

(a) (b)

Figure 3: Continued
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(c)

Figure 3: Steady-state response curves at different speeds: (a) 5000 r/min (b) 25000
r/min (c) 40000 r/min.

At a speed of 5000 r/min, the computing results of the Newmark method
with a step size of 5E-6 are already better than those of the single-step block
precise integration with a step size of 5E-7. When the speed is 25000 r/min,
the Newmark method with a step size of 5E-6 is relatively the worst in pre-
cision; however, with the same step size of 1E-6 and 5E-7, the Newmark
method is still closer to the precise results. When the speed reaches 40000
r/min, the results of the Newmark method with a 5E-6 step size further
diverge from the exact values, while at the same step size, the Newmark
method still has higher precision than the single-step block precise integra-
tion. Overall, as speeds increase, the precision of the Newmark method with
the same step size is superior to the single-step block precise integration
method, but the gap in computational precision between them is gradually
narrowing.

It was concluded that the calculation precision of the Newmark method
with the same step size is superior to the single-step block precise integra-
tion method. The reason is: due to the simplicity of the model and the
relatively few degrees of freedom, it is easier to satisfy the computation pre-
cision requirements. Although the Newmark method has only second-order
precision, it can achieve relatively accurate results with different step sizes
through Newton iteration. Although the single-step block precise method
has third-order precision, its precision is compromised due to the estima-
tion of internal points. Hence, for a simple model with the same step size,
the precision of the single-step block precise integration method is inferior
to the Newmark method. However, as the model becomes more complex,
the number of degrees of freedom increases, and nonlinearity intensifies, the
advantages of the higher order of precision of the single-step block precise
integration method will become progressively apparent.

COMPARISON OF COMPUTATION EFFICIENCY FOR STEADY-STATE
RESPONSE OF ROTOR SYSTEM

In terms of computational efficiency, the proportion of time used by the three
algorithms is the same at different step sizes, displaying the same pattern of
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efficiency. Therefore, only the case of a 5E-7 step size is selected for analysis to
deduce a general rule. At the same time, the maximal relative error (represent
as error in the table) of the displacement in the x and y directions of all nodes
after reaching a steady state is used for reference comparison (still taking
the results of the Newmark method with a step size of 1E-7 as the precise
values). The results for speeds of 5000 r/min, 25000 r/min, and 40000 r/min
are analysed (t is the time taken at a certain moment after reaching a steady
state), results are shown in Table 3.

Through analysis, the improved single-step block precise integration
method has reduced the computational time by about 20% compared to
the original algorithm, thus enhancing the computational efficiency of the
single-step block precise method.

For the dual-disc rotor model in question, the Newmark method’s calcula-
tion efficiency with the same step size outperforms the improved single-step
block precise integration method. The reason is: when the model is simple,
the second-order precision Newmark method can meet the precision require-
ments with fewer iterations, making its computational efficiency higher.
However, as the model becomes more complex and the number of degrees of
freedom increases, with the increase of iterations of the Newmark method,
its computational load will further increase, thus the calculation efficiency
advantage of the single-step block precise integration method will become
more evident.

Table 3. Comparison of calculation efficiency at different rotational speeds.

Method 5000r/min 25000r/min 40000r/min

Time(s) error (%) Time(s) error (%) Time(s) error (%)

Precise1 136.784 0.01840 279.808 0.00602 717.165 0.01838
Precise2 112.061 0.01840 227.980 0.00602 594.310 0.01838
Newmark 88.670 0.00033 208.441 0.00341 542.589 0.00632

CONCLUSION

Through a matrix sub-block refinement method, simplifying matrix-vector
operations, and storing constant matrices, the calculation efficiency of the
single-step block precise integration method has been improved, improv-
ing the issue of increased computing loads caused by using the Runge-Kutta
method to estimate internal point loads.

Utilizing the response calculations of a dual-disc rotor system, the com-
putational precision and efficiency of the improved single-step block precise
integration method and the Newmark method is compared before and after
the improvements. It is verified that when the model has fewer degrees of free-
dom, the Newmark method has better computation precision and efficiency
compared to the single-step block precise integration method. However,
as the speed increases, the gap in computation precision between the two
methods further narrows.
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