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ABSTRACT

Optimal eco-driving in electric vehicles (EVs) can be challenging due to volatile, bidi-
rectional energy flows and the difficulty of directly sensing energy flows. The present
research investigates energy-related situation awareness (Energy Dynamics Aware-
ness, EDA) as a pilot study. EDA is a theoretical concept that helps to describe and
understand how visual energy feedback displays inform energy-efficient vehicle con-
trol decisions. We compared three methods (estimation tasks, subjective EDA rating
scale, and gaze behavior metric) to assess EDA under two different workload condi-
tions, using a video-based online study displaying EV driving scenes (N = 29). We
developed a novel approach to collect gaze behavior indicators using self-controlled
(i.e., manually directed) occlusion through keyboard input. Participants were asked to
estimate and compare the energy consumed in EV driving scenes while performing a
parallel visuospatial n-back task to induce cognitive load. Based on our findings, the
n-back task successfully induced cognitive load and self-directed occlusion showed
to be a promising method for energy display evaluation studies. The performance
of the consumption estimation task and display fixations were influenced by cogni-
tive workload, which has important implications for ecodriving interface design. As
the subjective and performance-related measures of EDA did not correlate, the results
contribute to the discussion on the divergence between subjective and objective mea-
sures of situation awareness. This pilot study encourages further research with a larger
sample and adapted methods.

Keywords: Electric vehicles, Situation awareness, Ecodriving, Self-controlled occlusion, Work-
load, Instantaneous consumption display

INTRODUCTION

Electric vehicles (EVs) offer sustainable transportation, with drivers playing
a crucial role in determining the ultimate actual energy efficiency of EVs
while driving through their individual ecodriving behavior (Galvin, 2017;
Sureth et al., 2019). Ecodriving has a utility on a social (e.g., reduction of
CO2 emission) and individual level (e.g., reduction in energy costs, poten-
tial coping skill for situations facing limited remaining range; Rauh, Franke
and Krems, 2017) but can be challenging due to volatile, bidirectional energy
flows (i.e., regenerative braking; Arend and Franke, 2017) and the difficulties
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for humans to directly sense energy dynamics (in contrast to other physical
phenomena such as light or sound with dedicated human sensory capabil-
ities). Therefore, to support drivers, energy displays that provide access to
energy information are a standard built-in feature and have already been
the subject of scientific debate and empirical research in the field of human
factors (Dahlinger et al., 2018; Sanguinetti et al., 2020; Moll and Franke,
2021).

The human-machine interaction context of drivers executing ecodriving
behavior inside the vehicle based on available information can psycholog-
ically be conceptualized as an action regulation control loop, similar to
other control-theoretic models of facets of driving behavior (Fuller, 2011) or
self-regulation in general (Carver and Scheier, 1982), in which drivers con-
tinuously perceive the vehicle and the environment, and act accordingly to
perceived information and current driving goals (Franke et al., 2016). We
assume that in this context of ecodriving an energy-specific situation aware-
ness (Endsley, 1995, 2015), which we refer to as Energy Dynamics Awareness
(EDA; Gödker, Dresel and Franke, 2019; Gödker, Moll and Franke, 2024),
supports energy-efficient decisions and actions in electric vehicles and that
visual energy feedback interfaces can support EDA by providing information
to perceive, understand, or predict energy dynamics.

Here, workload plays a significant role as a limiting factor in conscious
cognitive and attentional processes. The closed-loop model of Johnson et al.
(2017) is an adaptation of the SEEV model (Wickens et al., 2003), and
has been designed to help understand and predict visual attention, cognitive
load, and situation awareness. Following this model, a lack of knowledge
about current system states (e.g., energy consumption) leads to uncertainty,
prompting operators to seek information from interfaces to clarify the state
of relevant elements (e.g., speed) and improve awareness. The longer opera-
tors refrain from looking at the interface, the more uncertainty grows until it
reaches a limit, which is themaximum desired uncertainty. Beyond this limit,
the situation awareness decreases significantly, and ultimately, performance.

Therefore, EDA and cognitive load in energy information processing are
central elements in the supporting effects of energy displays on ecodriving
and important to examine. In the present work, we focus on video-based
online studies. They are highly controllable, as they offer identical stimuli
for all participants (as opposed to field studies). In addition, they are a safe
and economical way to evaluate energy displays in early development stages.
However, gaze-based metrics such as uncertainty are difficult to measure
when eye tracking technology is unavailable.

Figure 1: Schematic representation of the relationship between visual fixations and
uncertainty from Johnson et al. (2017, p. 231).
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We adapted occlusion to assess indicators of gaze behavior, which is an
established method in information processing demand experiments with in-
vehicle displays (Krems et al., 2000; Baumann et al., 2004). Occlusion is
the temporary covering of information or visualizations to control the visual
attention on displays or on the traffic. Normally, occlusion is manipulated
and introduced by the experimenter, and participants do not control what is
occluded and when. But when participants can control when the occlusion
occurs, it is possible to infer with some accuracy the visual attention foci of
participants (i.e., self-controlled occlusion).

To sum up, since energy-related situation awareness can be assumed to
be influenced by workload and related to visual attention and behavior, we
tested whether we could link uncertainty as a gaze behavior metric during
the use of energy displays under different workload conditions to different
EDA measures in a pilot study.

Therefore, the present research had three research objectives:

RO1. To build and test an experimental setting to examine EDA under
different workload conditions.

RO2. To integrate and test self-controlled occlusion as a gaze data collection
method to quantify drivers’ energy information acquisition.

RO3. To examine any empirical link between visual attention towards the
energy information and (self-assessed) EDA.

METHOD

Sample

We recruited participants through the online learning platform of the Univer-
sity of Lübeck and by personally approaching colleagues and acquaintances.
Of the 43 full participations, we had to exclude 14 because the self-controlled
occlusion data could not be obtained or validated correctly due to technical
reasons. The final sample (N = 29, 16 female, 12 male, 1 not stated) had
an average age of M = 29.9 years (SD = 14.1) and an average affinity for
technology interaction (ATI) of M = 3.58 (SD = 1.32), which was almost
exactly equal to the distribution of a quota sample assumed to represent the
general population in Germany (M = 3.61; Franke, Attig and Wessel, 2019).

Driving Scenes

In this online experiment, participants viewed driving scenes (videos) of EV
trips from the driver’s field of view, along with an instantaneous consump-
tion display that has been designed for a previous study (for more details,
see Gödker, Moll and Franke, 2024). In addition, current speed as well as
brake and throttle pedal position were presented (Figure 2). For the driving
scenes, we collected OBD-II data and dashcam footage of the driver’s view in
a Renault ZOE EV in urban conditions. Participants had to watch five driv-
ing scenes: one test driving scene to introduce the setting and task, then four
experimental driving scenes to measure the dependent variables. Of these,
two driving scenes each shared the same route (“Route A”or “Route B”) but
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differed in consumption due to the driver using two different driving strate-
gies: (1) driving-to-keep-distance (constant distance to vehicle ahead), that
is, inefficient or (2) driving-to-keep-inertia (constant speed), that is, efficient
(adapted from Blanch Micó et al., 2018; Lucas-Alba et al., 2020).

To produce the final videos, driving data was imported into a Web app
that displayed velocity, trip distance, pedal positions, and an energy display
along with a synchronized video of the dashcam recordings. The trips lasted
between 142 and 282 seconds, and the average energy consumption was
between 5.14 and 18.09 kWh/100km.

Figure 2: Screenshot of the video of the electric vehicle driving scene..

Measurement

We first assessed EDA using two performance-related energy consumption
estimation tasks. First, after each driving scene, participants had to estimate
as accurately as possible how many watt hours per kilometer were consumed
on average during this trip (ConsEst). Then, after the second driving scene of
the same route, participants were additionally asked to indicate on which of
the two trips of the same route more energy was consumed (EffIdent). The
second method to assess EDA was an adaptation of the EDA scale (Gödker,
Moll and Franke, 2024) as a subjective self-rating scale assumed to assess
experienced EDA (Table 1). The internal consistency of this scale was overall
good (Cronbach’s α =.881). The six items had an α-if-item-deleted value
below 0.881, which means that no item should be excluded from the analysis.

As a third method to assess EDA, we used the sampling period and the
uncertainty metric by Johnson et al. (2017). The sampling period is defined
as the average duration between two fixations on the display. The uncer-
tainty is determined by the extent to which the sampling period exceeds the
baseline sampling period. We defined the latter as the sampling period under
normal circumstances without additional workload. The uncertainty met-
ric was calculated by dividing the sampling period by the baseline sampling
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period. Following the assumptions of Johnson et al. (2017), if the sampling
period exceeds the baseline (uncertainty > 1), important information cannot
be perceived and situation awareness decreases.

Table 1. EDA scale items used in the present study, adapted item wording based on
(Gödker, Moll and Franke, 2024).

Item Text (translated from German)

1 By using the display during the previous two trips, I got a very good
overview of the energy dynamics of the system.

2 By using the display during the previous two trips, I was able to precisely
estimate the influence of various factors on the energy consumption.

3 By using the display during the previous two trips, I understood which of
my actions influence the energy dynamics.

4 Using the display during the previous two trips allowed me to correctly
predict the energy consumption in future situations.

5 By using the display during the previous two trips, I knew exactly what can
influence the flow of energy.

6 By using the display during the previous two trips, I felt very able to
increase energy efficiency if I had the opportunity.

We implemented self-controlled occlusion so that at any time either the
entire view from the windshield was obscured by a gray box or the displays in
the lower area. By pressing the space bar, participants could decide which area
was covered and could change this as often as they wished and at any time.
The sampling period was then calculated by averaging the time between two
space bar presses, which indicated an active removal of the display occlusion
(see both occlusion states in Figure 3).

Figure 3: Screenshots of the two occlusion states that could be changed by pressing
the space bar.

N-Back Task

During each driving scene, participants had to perform a parallel visuo-
manual n-back task in two variations to induce two workload conditions as
independent variable (0-back= low workload and 1-back= high workload).
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The n-back task was to press the keys W, A, S, or D according to a visual sig-
nal. The visual signal was a gray cross, semi-transparent in the view from the
windshield. At variable time intervals (between 3 and 10 seconds), one side
of the cross was highlighted white for 1.5 seconds. In the 0-back condition,
the response was to be given directly via W (up), A (left), S (down), D (right);
in the 1-back condition, the first visual stimulus was not responded to at all,
and from the second stimulus onward, the correct reaction had to be given to
the previously seen stimulus. A correct response was indicated with a green
square surrounding the cross, and a false response was indicated with a red
square. Giving no response at all was counted as false. If the windshield view
was occluded during a stimulus, the stimulus was indicated by highlighting
the middle of the cross to give participants the opportunity to change the
occlusion for the n-back task (right screenshot in Figure 3).

Procedure

Participants began by providing demographic information. The experiment
proceeded in two blocks, each presenting a different workload condition (low
or high). In each block, participants watched the two driving scenes (high and
low efficiency) while performing the n-back task with self-controlled occlu-
sion. Consumption estimation accuracy (ConsEst and EffIdent), self-assessed
EDA (EDA scale), and the NASA-TLX scale (Hart and Staveland, 1988) were
queried in each block. After completing both workload conditions, the par-
ticipants’ affinity for technology interaction (ATI) and technical knowledge
were queried.

Manipulation Check

Regarding RO1, we checked whether the manipulation of different work-
load conditions was successful in this setup. The accuracy of the responses
to the n-back task was significantly higher in the low workload condition
(Mdn= 92.9%) than in the high condition (Mdn= 87.6%, p= .004, r= .52).
Furthermore, although theNASA-TLX total score does not differ as indicated
by a Wilcoxon signed-rank test (p = .176, r = .25), the mental load item was
significantly higher in the high workload condition (M = 11.59, SD = 3.86)
than in the low condition (M = 10.24, SD = 4.00, t(28) = −2.11, p = .044,
d = −0.39). Both results implied a successful workload manipulation by the
n-back task.

RESULTS

Our first research objective (RO1) was to assess EDA under different work-
load conditions. Neither the average EDA scale mean score (Mlow = 4.09,
SDlow = 0.86, Mhigh = 4.18, SDhigh = 0.74, t(28) = −0.9, p = .824,
d = −0.18) nor the share of correct efficiency identifications (EffIdent,
Mlow = 93%, SDlow = 26%,Mhigh = 93%, SDhigh = 26%, that is, identical)
showed significant differences. But the accuracy of the absolute consumption
estimation (a higher value indicates more absolute difference to the correct
value, that is, less accuracy) was significantly higher in the low workload
condition (Mlow = 38.9, SDlow = 19.9) than in the high workload condition
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(Mhigh = 61.8, SDhigh = 24.6, t(28) = −3.62, p = .001, d = −0.67). This
implies a reduced understanding of energy dynamics with higher cognitive
workload.

Regarding RO2, the sampling period (showing a non-normal distribution,
hence, we used non-parametric analysis methods) was significantly different
(Mdnlow = 5.35, IQRlow = 5.0 Mdnhigh = 7.63, IQRhigh = 5.0) in the two
workload conditions, tested using a Wilcoxon signed-rank test (p = .001,
r = .58) and indicating a negative effect of workload on visual attention to
energy-relevant information. This is remarkable, as the demands for visual
attention are identical in the two workload conditions. We also calculated
the uncertainty metric for each person by dividing the sampling period for
the high workload condition by the sampling period for the low workload
condition. If there were no uncertainty, this value would be 1. In our sample,
the median Mdn = 1.37 (IQR = 0.95) was significantly higher than 1 as
indicated by a one-sampleWilcoxon test (p <.001, r=.64), which implies that
the higher workload condition affected gaze behavior. This, in turn, could
potentially have led to an information acquisition deficit due to the reduced
visual attention allocated to the energy feedback display to obtain necessary
energy information.

Regarding RO3, the three EDA measurements (ConsEst/EffIdent, EDA
scale, and the uncertainty / sampling period) did not show significant cor-
relations with each other (−.07 < r <.19, .148 < p < .606), implying no
empirical relationship between the EDA measures and gaze behavior in the
present study.

DISCUSSION

The results showed differences in consumption estimation and the sampling
period in the two workload conditions. However, the self-assessed EDA and
efficiency identification did not differ due to the workload condition. Further-
more, no correlation was found between the EDA measures. Consequently,
the present study presents methodological, theoretical, and practical impli-
cations for understanding the processing of energy-related information by
drivers under varying workload conditions.

Methodologically, the research successfully built and tested an experimen-
tal online setting to test human information processing in the context of
understanding energy efficiency under varying workload conditions (RO1).
This method can be used to evaluate energy display concepts in the early
development stages. Moreover, we introduced self-controlled occlusion as a
novel gaze data collection technique in an online video-based setting (RO2).
This innovative approach enables the calculation of fixation-based eye-
tracking metrics without any camera or sensor technology. Furthermore, the
present study applied three different methods to assess and quantify energy-
related situation awareness (EDA), providing insights on the properties and
potential applications of these measures.

Theoretically, the lack of correlation between self-assessed EDA and
performance-based EDA measures, along with the absence of a difference in
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self-assessed EDA between workload conditions, hints at a conceptual diver-
gence in subjective and objective measures of EDA (RO3). This suggests that
individuals’ experience of their energy-related situation awareness may not
accurately reflect their actual comprehension. This finding contributes to the
discussion of the theoretical divergence of subjective and objective situation
awareness measures (Endsley, 2020).

Practically, the findings suggest that visual attention and comprehension
of energy consumption are influenced by workload, as evidenced by the
differing sampling periods under the two conditions and the difference in
the accuracy of consumption estimation. This indicates a dynamic interplay
between task demand and information processing in the ecodriving con-
text. In turn, this suggests the need for careful selection of displays or even
the use of situation-adaptive energy displays in complex driving situations.
Instead of displays supporting the understanding of energy consumption,
more action-oriented displays might be favorable (e.g., indicating the optimal
speed).

Limitations and Outlook

The present study served primarily as a feasibility test for self-controlled
occlusion as a gaze indicator assessment method and to obtain first results
on any empirical link between visual attention towards the energy informa-
tion and (self-assessed) EDA. The rather small sample size (N = 29) limits the
generalizability of our findings to some extent. Our different EDA measures
did not show correlation with each other. This might signal a methodological
concern, such as issues with the reliability or validity of our measures (also
discussed in Gödker, Moll and Franke, 2024). Alternatively, it could reflect
a conceptual divergence between subjective, objective, direct, and indirect
measurements. Detailed investigations are necessary to discern and under-
stand these nuances. Furthermore, our pilot study did not involve real driving
behavior but focused solely on the acquisition and comprehension of energy-
related information. While this provides valuable insights, the transferability
of our findings to actual driving scenarios cannot be answered based on the
present study. Additionally, the scenes used in the present study were not the-
oretically derived, which means they were not selected based on their energy
relevance (i.e., where ecodriving makes a difference in consumption) or other
characteristics of driving situations such as complexity (leading to additional
cognitive workload).

Although the present pilot study only used one energy display, different
displays or display variations should be incorporated into future studies.
This could increase understanding of the effect of single display elements
on human information processing and the resulting behavior (Sanguinetti,
Dombrovski and Sikand, 2018). Additionally, the successful manipulation of
cognitive workload and the sensitivity of the sampling period data provided
a solid foundation for further analyses and empirical studies. In the present
study, participants watched driving scenes and energy information on the
computer screen. As eye movement in real vehicles is different, subsequent
research should also compare the present results with eye tracking data in
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real or simulated driving scenarios. Transfer to driving simulator studies or
field studies would not only enhance the ecological validity of the findings but
would also allow for a more nuanced understanding of how EDA influences
actual driving behavior and energy efficiency.

Finally, future studies should ensure that the scenarios used are carefully
selected and recorded based on their energy relevance and complexity. This
would ensure that the research context closely mirrors real-world driving
conditions, thereby enhancing the practical applicability and impact of the
research. Furthermore, the omission of irrelevant situations could further
increase the diagnosticity and economy. Established catalogs of driving situa-
tion requirements should be used for such a definition and selection of driving
situations (e.g., Fastenmeier and Gstalter, 2007) to inform optimal design of
driving scenes to advance understanding of human-energy interaction.

In summary, the present pilot study offers a promising basis for future
research. While this study represents an important first step in evaluating
human energy information processing in electric vehicles, much remains to be
explored to better understand and support ecodriving, energy display design,
and electric vehicle use, ultimately contributing to more energy-efficient and
sustainable driving behavior.
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