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ABSTRACT

It is inherent to autonomous systems that they exhibit very complex behaviour and that
these complex and flexible patterns of behaviour are in general less comprehensible and
foreseeable to humans interacting with the systems. It is generally accepted wisdom that
suitable explanations can help humans to understand the functioning of these systems.
This, in turn, enhances safety, trust, and societal acceptance through meaningful interac-
tion. Our algorithmic approach starts from the observation that the design of explanations
has two essential dimensions to it, namely, content on the one hand and frequency and
timing on the other. While there has been extensive research on the substance of expla-
nations, there has been comparatively limited exploration into the precise timing details
of explanations. Existing studies on explanation timing often focus on broad distinctions,
such as delivering explanations before, during, or after the use of the system. Regarding
Autonomous Vehicles (AVs), studies indicate that occupants generally prefer receiving an
explanation prior to the occurrence of an autonomous action. However, extended expo-
sure and use of a specific AV may likely diminish the necessity for explanations. Since
understanding the explanations can add to (cognitive/mental) workload, this observation
suggests the importance of optimising both the frequency —skipping explanations when
unnecessary to minimise workload—and the precise timing of explanations, delivering
them when they offer the maximum reduction in workload. The interesting fact here is
that additional mental workload for the passengers can be caused both by providing and
by skipping an explanation: Any explanation that is presented requires cognitive process-
ing for its comprehension, even when its content is considered redundant by the addressee
(e.g. due to the explanation content already being familiar to the passenger) or is not mem-
orised (e.g. when an early explanation becomes superimposed by successive events due
to the limited capacity of working memory). In contrast, a skipped explanation may prompt
the passenger to actively scan the environment for potential cues (e.g. to understand the
reasons for an unfamiliar action of the AV) and such an attention strategy induces cogni-
tive workload itself. Concerning the latter effect, Kantowitz has investigated the relation
between attention and mental workload and concluded that even simple models of atten-
tion are sufficient to predict the mental workload. In this work, we develop a probabilistic
reactive game model of mental workload and the impact of explanations on it. It consists
of a workload model based on SEEV as a probabilistic component modelling the human
and the self-explaining AV function as the other player. The resulting 1.5-player game or
Markov Decision Process facilitates to automatically synthesize a rational reactive strategy
which will present explanations to the human only when beneficial and then at the optimal
time, thereby minimising the cognitive workload of the human.
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INTRODUCTION

In an era dominated by highly automated and autonomous systems, the tech-
nological landscape is evolving at an unprecedented pace. These advanced
systems, characterized by intricate and potentially impactful behaviors, sur-
pass the capabilities of earlier device generations. As humans increasingly
interact with these complex and adaptable technologies, the challenge arises
in comprehending and predicting their actions. This dynamic presents an
opportunity for exploration, as conventional wisdom hints at the importance
of offering clear explanations to improve understanding. Such clarity not only
fosters safe interaction but also nurtures trust and societal acceptance in the
ever-evolving realm of automated systems. This paper focuses on optimizing
explanations in autonomous vehicles (AVs) through a specialized algorithm
in a game setting. We recognize two key dimensions in explanation formu-
lation: content, representing the substance of the explanation answering the
questions of what is happening and why is it happening; and frequency and
timing, encapsulating the temporal aspects of explanation delivery. While
existing research has made significant progress in understanding the content
dimension, there exists a noticeable gap concerning the nuanced timing intri-
cacies associated with delivering explanations. The existing body of research
on explanation timing primarily gravitates towards a broad categorization,
distinguishing between the presentation of explanations before a use of the
system, during its use, or after. In the case of AVs, numerous studies indicate a
preference among occupants for receiving explanations prior to the execution
of autonomous actions (Du et al., 2019), (Koo et al., 2016), (Ruijten et al.,
2018). It does however seem probable that familiarisation due to prolonged
exposition to and use of a particular AV will reduce the need for explana-
tion. The comprehension of explanations introduces an inherent workload,
necessitating a delicate balance in optimizing both the frequency and precise
timing of explanations. This optimization involves the strategic skipping of
explanations when deemed unnecessary to mitigate overall workload. Fur-
thermore, it implies that explanations should be timed to offer maximal
workload reduction, aligning with the observed preference for pre-action
explanations.

The interesting fact here is that additional mental workload for the passen-
gers can be caused both by providing as well as by skipping an explanation.
Any explanation that is presented requires cognitive processing for its com-
prehension, even when its content is considered redundant or not memorised
by the addressee. The former may, e.g., occur due to the explanation content
already being familiar to the passenger, while the latter may be induced by,
e.g., an early explanation becoming superimposed by successive events due
to the limited capacity of working memory (cf. Baddeley and Hitch, 1974).
Vice versa, a skipped explanation may prompt the passenger to themselves
actively scan the environment for potential cues as necessary, e.g., for under-
standing the reasons for an unfamiliar action of the AV. Such an attention
strategy obviously induces a significant cognitive workload itself. Concern-
ing the latter effect, Kantowitz (Kantowitz, 2000) delved into the correlation
between attention and mental workload, arriving at the conclusion that even
simplistic attention models prove adequate in predicting mental workload.
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Since its inception in 1944, mathematical game theory (von Neumann
& Morgenstern, 1944) has been a versatile framework for understanding
human decision-making across various domains. Despite recent stateful mod-
els in neuropsychology and cognitive psychology, the exploitation of stateful
game theory in human-machine interaction design is in its early stages. In
our work, we are using game theory along with a stateful model of atten-
tion called SEEV, developed by Wickens and others (Wickens et al., 2001).
By adopting SEEV, we aim to capture the evolving nature of attention over
time, providing a more comprehensive framework for assessing and predict-
ing the cognitive demands associated with explanation delivery in the context
of AVs.

In the next section we examine the intricate relationship between timing
and explanation through an example scenario. We then delve into the SEEV
model, discussing its conceptual framework and theoretical foundations, fol-
lowed by its implementation in a reactive game. The penultimate section
focuses on the game results, where we analyze and interpret findings. Our
paper concludes by summarizing key contributions and future prospects for
our project.

EXAMPLE SCENARIO

To demonstrate the effect of the timing of an explanation on human attention,
let us consider the following example shown in (Bairy et al., 2022):

At an intersection, an autonomous vehicle v that plans to take a left turn
stops despite a green traffic light permitting an uninterrupted left turn.
v is prepared to explain to its occupants that it stops to give way to an
emergency vehicle, but has to decide whether and when to provide the
explanation.

If the explanation is provided too early in the example scenario, e.g. before
it is clear to the passenger that an intersection is ahead and a left turn immi-
nent, the information might be disregarded, with the cognitive workload
induced by its processing being wasted. If the explanation is provided too
late — even just slightly late — or not provided at all, the occupants will
be prone to start their own attention strategy screening the environment to
come up with an explanation for the unexpected stopping at a green light,
thus increasing the cognitive workload by pursuing active attention. Min-
imisation of cognitive workload thus critically hinges on the fine-granular
optimisation of explanation timing.

ATTENTION MODEL - SEEV

Wickens and others developed a model called SEEV to quantitatively evalu-
ate and predict the attention level of a human in any given situation across
different areas of interest (Wickens et al., 2001). The SEEV model was ini-
tially developed to predict the attention of a pilot in a cockpit. Later on,
Horrey (Horrey et al., 2006) as well as Wortelen (Wortelen, 2014) utilised
the SEEV model and derivatives thereof to predict the attention of a driver
in road traffic.
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SEEV is an acronym for its four attributes representing Salience (S), Effort
(Ef ), Expectancy (Ex), and Value (V) of an information item or area of inter-
est. Salience describes how salient fresh information of the particular type,
if becoming available, would be to the human. Effort refers to the amount
of (physical) effort applied by the human to perceive this new information.
Expectancy refers to the frequency of new information becoming available
and consequently is a dynamic variable describing the expected remaining
time to arrival of updated information on the particular item.Value is the gain
the human expects from the information item. The formula for calculating
the probability of attention P(A) to an item using SEEV is

P (A) = S− Ef + Ex · V (1)

Since salience and effort are both related to physical properties of the envi-
ronment, they are grouped together and referred to as “bottom-up” factors
which affect attention (Wickens, 2015). The other two attributes, namely,
expectancy and value, are termed “top-down” factors. Note that some of
these factors change dynamically, inducing a temporal dynamic of attention
that we will exploit for optimising explanation timing. This obviously applies
to the top-down factors of expectancy, i.e. the remaining time to arrival of
fresh information, and of value, as the value may change by moving into a
differently structured environment (e.g., from urban driving to an express-
way) or as existing information ages and gets invalidated by the dynamic
evolution of environmental states.

THE SEEV MODEL IN A REACTIVE DECISION GAME

As sketched in the introduction, we want to employ the SEEV model as a
means for rationally deciding on whether and when to provide an expla-
nation. We, therefore, build a reactive game graph from the SEEV model
and synthesise a strategy minimising the expected workload for the human,
where the strategic options at each time instant are to either present an expla-
nation or to refrain from doing so currently. As the SEEV model describes
autonomous stochastic dynamics, namely a probabilistic model of the human
paying attention as a function of the evolution of time and the last time of
an explanation, the corresponding game model would be a Markov Decision
Process (MDP), a.k.a. 1.5-player game, due to (Howard, 1960). Such a game
features a strategic (or ‘full’) player following a designated strategy against a
random (or ‘half’) player selecting actions at random according to given prob-
ability distributions. In our setting, the random player is given by the SEEV
model, which decides at random — though with history-dependent proba-
bility — when to pay attention to an item, thereby inducing the workload
associated with the attention strategy. Our strategic player is the explana-
tion mechanism, which decides strategically when to present an explanation
in order to minimise the expected cognitive workload on the human, as sug-
gested in (Bairy et al., 2022). Note that presenting an explanation also induces
workload on the human connected to explanation reception and interpre-
tation, albeit generally at lower workload levels than pursuing an active
attentive strategy. In our game, we work only on finding the optimal time
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for an explanation shown in section Example Scenario. Since there is only a
fixed area of interest in this scenario, the effort factor remains constant. Given
the short time span of the scenario, we can also approximate the salience as
being constant throughout the scenario. Thus both Salience and Effort and
consequently also their difference can be replaced by a constant in eq. 1. The
probability of attention can now be calculated using just the top-down factors
as

P (A) = Ex · V + c (2)

The above SEEVmodel has been implemented as a dynamic factor impact-
ing workload within a Markov decision process where the decisions concern
explanation presentation, and we have employed MATLAB (MATLAB,
2022) to compute the reactive presentation strategy for the explanation. The
SEEV game starts n time seconds before the scenario occurs, and ends when
the scenario finalises.

At each time step, which is one second, the strategic player, i.e. the explana-
tion presentation machinery, can perform an action that takes it to one of the
following three states, namely: no_expl indicating the absence of an expla-
nation; expl denoting the provision of an explanation; and no_expl_needed
indicating instances where an explanation is deemed unnecessary. Each of the
{states, actions} pair of the strategic player is associated with certain costs/re-
wards. The attention level of the occupant is then assessed using eq. 2, which
considers the chosen action by the strategic player and the associated cost.

Figure 1: State diagram of the strategic player.

Figure 1 shows a state diagram with the different states and their transi-
tions for the strategic player. The expectancy of the random player builds up
with a constant value (exp) over time. this is depicted in the Figure 2.

The value of the SEEV model can also be considered a constant since our
game is applied only to the example in the Example Scenario section which
has only one area of interest. Costs/rewards are provided for various actions
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taken by the strategic player. The rewards depend on the probability of atten-
tion (P(attn)) and the probability of no critical scenario (P(not_critical)).
P(attn) is calculated using the eq. 2. In the next section we discuss more about
how the rewards are calculated.

Figure 2: Expectancy of the random player (Baity et al., 2023).

EXPERIMENTAL RESULTS

The goals of the SEEV game were to identify the time when it is ideal to
provide the explanation in order to obtain the minimum cognitive workload
and to determine the minimum, across all presentation strategies possible,
the expected cognitive workload on the human. To determine these factors,
rewards need to be assigned for the various state transitions. This is given in
the Table 1.

Table 1. MDP rewards.

S S’ Probability R

no_expl no_expl P(not_critical). P(attn) 0.4
no_expl no_expl P(not_critical). (1-P(attn)) 0.2
no_expl expl P(not_critical) 0.3
no_expl no_expl_needed P(not_critical) 0.0
expl expl 1 0.1
no_expl_needed no_expl_needed 1 0.0

As this is a finite horizon model, backward Bellman induction is used to
calculate the minimum workload that is induced by the attention strategy at
any given point in time. The formula to calculate the minimum workload
(min_wl) is given by eq. 3. At certain times, the explanation might not be
required if the user has already evaluated the surroundings or the situation
resolves itself. This is taken into consideration as a probability of no critical
scenario (P(not_critical)). Additionally, a constant, no_expl_wl, is employed
when no explanation is required. expl_wlkn gives the workload of an expla-
nation where k is the time when the scenario occurs and n represents the
current time. The formula to calculate this is given in eq. 4.

min_wlkn = P
(
not_critical

)
· no_expl_wl

+
(
1− P

(
not_critical

))
· expl_wlkn (3)
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expl_wlkn is the minimum value of the cost of providing an explanation
and the cost of not providing an explanation at time n, given a total sce-
nario duration of k. Taking the minimum reflects the strategic choice of the
explanation mechanism, which aims at minimising the expected workload.
The cost of providing an explanation depends on the cost of the explanation
itself, given as C(E), and the cost which occurs once an explanation is pro-
vided (after_C(E)). The cost of not providing an explanation varies based on
the probability of attention. This value is calculated using the backward Bell-
man recursion.Herein P(attn) is the probability of attentionwhich is obtained
by the SEEV model. When attention is being paid, expl_wl is the workload
cost of pursuing an attention direction by the occupant (attn_cost) along with
the backward recursion of minimum workload whose horizon is reduced to
k - n. If there is no attention, then expl_wl is the cost of not paying atten-
tion (no_attn_cost) along with the backward recursion value of the minimum
workload.

expl_wlkn = min


C (E) +

(
k− n

)
· after_C (E) ,

P (attn)n ·
(
min_wl(

k−n)
0 + attn_cost

)
+ (1− P (attn)n) ·

(
min_wlk(n + 1) + no_attn_cost

)
(4)

Based on these rewards, the optimal time to provide an explanation
(t_expl) and the minimum workload (min_wl) for different times until the
scenario occurs (t_max), is given in the Table 2. Here t_expl is the time to
provide the explanation from the current instant.

Table 2. Optimal explanation time based on mini-
mum workload.

t_max (s) t_expl (s) min_wl

2 2 0.300
3 2 0.400
4 2 0.500
5 2 0.500
6 3 0.600
7 4 0.600
8 5 0.600
9 6 0.600
10 7 0.600

The Table 2 shows the results of optimising explanation timing or horizons
t_max from 2s until 10s. If the horizon is less than 2s, i.e. if the event occurs
within the next second or is already occurring, then the model indicates that
no workload reduction can be expected from an early explanation, but this
situation changes if the temporal horizon until the event occurs gets larger.
Then the exact time of presentation matters: neither presenting as soon as
possible nor as late as possible are optimal, but explanation timing is a piece-
wise affine function of duration of the scenario. In other words, contrary to
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intuition it is not best to provide an explanation at the earliest convenience,
but there is a defined point in the scenario where it fits best.

When extending scenario durations further, we make the interesting obser-
vation that up to scenario duration t_max = 15s, the optimal explanation
time is 3s before the scenario occurs. But from t_max = 16s onward we see
the need to provide two explanations at 2s from the start and again at 3s
before the occurrence of the event. This has already been explored in (Bairy
et al., 2023).

Though the backward induction currently is implemented in MATLAB,
which does not constitute the most efficient execution platform, we also mea-
sured computational runtimes to determine the feasibility of online use of
the optimisation procedure for in-situ optimisation of explanation timing in
real-time. We found that for smaller values of t_max (≤ 20s), the backward
induction procedure can be executed online as the computation time stays
less than 1s. But due to the backward recursive function, the computation
time exponentially increases. Hence for larger values of t_max, the model
needs to be implemented offline or on a more efficient execution platform.

CONCLUSION

This paper introduces the development of a reactive game that utilizes the
SEEV model to ascertain the optimal timing for providing explanations. The
results presented in the previous section are based on the cost/reward val-
ues postulated for the different transitions shown in table 1. These costs
currently are just educated guesses serving the purpose of demonstration of
the technology, yet lack empirical psychological grounding. We are working
together with cognitive psychologists to obtain empirical evidence concern-
ing the actual cost values as well as cross-validation of the optimal timings
obtained in table 2, by conducting experiments on real-life subjects.

This research concentrates on determining the optimal timing for provid-
ing explanations to a single human present in an AV. Future directions for
exploration involve extending the study to scenarios where multiple humans
are present, investigating the nuanced dynamics of explanation timing in a
group context. Another direction to focus on is the sementic content of an
explanation. Rakow and others propose a game-based approach to discern-
ing what content to provide and when (Rakow et al., 2023). The insights
gleaned from the present paper could serve as a valuable foundation for
the development of such a game, contributing to a more comprehensive
understanding of effective explanation strategies for human-AV interaction.
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