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ABSTRACT

Level 2 advanced driver assistance systems (ADAS), sometimes referred to as partial
automation systems, control both longitudinal and lateral motion of a vehicle under
driver control and supervision. Level 2 systems are increasingly common in commer-
cially available vehicles, and there has been extensive study of the potential impact of
these systems on crash risk. Historically, studies of these systems have used proxies
for crash risk, such as driver behavior and attentiveness, to predict the eventual influ-
ence of these systems on real-world crash rates. However, recently, real-world crash
studies have been conducted for L2 systems from multiple manufacturers. This paper
provides a review of both non-crash and crash based evaluations of Level 2 systems,
including a new analysis of crash data published by Tesla. Overall, while non-crash
assessments of Level 2 systems have been mixed, all crash studies published to date
point to a reduction in risk associated with such systems. This review also suggests
improvements to non-crash studies that may increase their predictive value.
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INTRODUCTION

While there are currently no fully automated automobiles available on the
consumer market, partial automation features are offered by multiple manu-
facturers and are even standard in certain vehicle models. Level 2 (L2) driver
assistance systems (SAE International, 2021; NHTSA, 2023) combine lon-
gitudinal vehicle control through acceleration and deceleration with lateral
control through vehicle steering. This can be achieved, for example, through
the combination of an adaptive cruise control (ACC) feature and lane center-
ing assist (LCA) feature. SAE International and the National Highway Traffic
Safety Administration (NHTSA) define L2 systems as driver support/assis-
tance features, where the driver is required to be in control, respond, and
remain attentive to the driving environment. Examples of commercially avail-
able L2 systems include Audi Traffic Jam Assist, Ford BlueCruise, GM Super
Cruise, Nissan ProPILOT Assist, Volvo Pilot Assist, and Tesla Autopilot.
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Although L2 systems may be marketed as convenience features, similar
to cruise control, there is clearly the potential for these systems to influ-
ence crash rates. Studying this effect, however, is non-trivial. Unlike simpler
systems like automated emergency braking (AEB), there are no formal def-
initions of target crash types expected to be impacted by L2 systems (e.g.,
Wang, 2019). Manufacturers may provide guidance regarding the intended
use of L2 systems (e.g., road type or speed limitations), and they are acti-
vated at the driver’s discretion. This makes it challenging to identify crashes
and crash exposure for which L2 was active and that are appropriate for
performance characterization.

As a consequence, the potential impact of L2 technology is often evaluated
using proxy information, such as studies of driver gaze and attentiveness.
Such studies may generate conflicting results and may not reflect the true
impact of L2 systems on crashes. In this paper, we provide a review of such
proxy studies attempting to gauge the effects of L2 systems, as well as a com-
parison to two types of crash studies that have been successfully carried out
for L2 systems: equip/non-equip and usage based. We include a new analysis
for Tesla Autopilot crash data. We then compare the predicted effects from
non-crash studies with the crash data available and discuss challenges and
potential future opportunities for assessing crash risk of partial automation
and driver assistance systems.

METHODOLOGY

We conducted a literature review with multiple search strategies including
database searches and scanning the reference lists of relevant papers. The
non-crash studies included in this review were selected for inclusion if they
assessed the impact of L2 systems on driver behavior. Our written review of
non-crash studies was non-exhaustive but includes a representative sample
of non-crash assessments. For the crash studies, we included all research that
we identified that included real-world crash data associated with L2 systems.

NON-CRASH ASSESSMENTS OF L2 SYSTEMS

Some design intentions of L2 driver assistance are to reduce the effort of the
driving task, maintain a safe distance from other vehicles, and maintain the
vehicle in the lane, which in turn has the potential to result in safety benefits
for the driver (e.g., Seppelt&Victor, 2016). Despite the potential benefits that
these systems can provide, researchers also suggest that the reduced effort
toward the driving task might have other unintended effects (e.g., Reagan
et al., 2021).

A primary area of interest when estimating the potential benefits and lim-
itations of L2 systems is driver engagement in the driving task. Research on
ACC and L2 systems suggests that these systems have the potential to reduce
driver workload (e.g., de Winter er al., 2014; Endsley, 2017; Biondi et al.,
2018) and increase situational awareness (e.g., Beller et al., 2013; Endsley,
2017; Mueller et al., 2022), which in turn could free up attentional resources
and provide potential benefits to the driver. For example,Mueller et al. (2021)
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found that using an L2 system improved situational awareness for partici-
pants who had experience using an L2 system and demonstrated that those
with improved situational awareness spent more time looking to the forward,
periphery, and side, as well as in the rear-view mirror, which the authors sug-
gested indicates more active and dispersed scanning strategies. In addition to
changes in situational awareness and workload, a longitudinal study of driver
behavior while operating L2 systems demonstrated a reduction in speeding
behavior when L2 systems were activated compared to manual driving by
experienced drivers (Dunn et al., 2019).

On the other hand, researchers have also suggested that the use of L2
systems may provide drivers with the opportunity to engage in distract-
ing non-driving related behaviors that involve manual or visual distraction
(e.g., removing hands from the wheel or reduced scanning of the roadway
and mirrors), which have been associated with increased crash risk (e.g.,
Cunningham et al., 2017; Dingus et al., 2016; Gershon et al., 2019). In
an early case study using Tesla’s Autopilot, Endsley (2017) indicated she
was able to look around and be more aware of traffic with the L2 system
engaged, but that over time, she experienced mind-wandering and noted that
her attention also deviated to competing tasks, like texting or adjusting the
navigation or sound system. Similarly, Reagan et al. (2021) found an increase
in visual-manual non-driving tasks, including cell phone activity and center
stack activity, over a period of four weeks for inexperienced participants using
Volvo’s Pilot Assist L2 system compared to manual driving.

Studies using glance behavior to examine visual attention to the roadway
have shown mixed results. Morando et al. (2020) found that 64% of glances
were toward the forward roadway when participants used L2 technology,
compared to the 76% under manual driving control. In contrast, Shutko
et al. (2018) found that participants kept their eyes on the roadway 89% of
time with similar technology engaged, which they claim is consistent with
manual driving (e.g., Tijerina et al., 2004). Further, Shutko et al. (2018) also
diverge from Reagan et al. (2021) as they demonstrate that although partic-
ipants engaged in a variety of non-driving tasks, engagement in these tasks
was similar across periods of L2 system use and manual driving. This is con-
sistent with findings from a subset of longitudinal L2 driving studies which
found that drivers were not overly reliant on the system, operated L2 systems
as intended, and did not engage in non-driving secondary tasks more when
compared to manual driving (Dunn et al., 2019; Russel et al., 2018). Fur-
thermore, interview research examining the potential for driver engagement
in non-driving tasks suggests that while experienced L2 drivers may engage
more in secondary tasks, they are likely adapting to the driving situation, and
identify “safe,” less risky scenarios before engaging in these tasks (Lin et al.,
2018).

In summary, non-crash based research examining the potential impact of
L2 systems on driver engagement in the driving task is mixed, with results
indicating improved, degraded, or equivalent performance to manual driving
depending on the assessment method.
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CRASH ASSESSMENTS FOR L2 SYSTEMS

As described previously, there are challenges involved in acquiring appro-
priate data to directly assess the impact that L2 systems may have on crash
rates. Crash rate calculations require information about relevant crashes and
the potential exposure of vehicles to crashes. There are two primary strate-
gies that have been used thus far for assessments of L2 impact on crash rates:
equip/non-equip studies and use/non-use studies.

An equip/non-equip study compares the crash rate for vehicles with L2
technology equipped with “control” vehicles that do not have the technol-
ogy equipped, but they do not include any information about whether the
system was in use at the time of the crash. The Highway Loss Data Institute
(HLDI) has carried out a series of equip/non-equip studies for L2 systems
from multiple manufacturers, including Tesla (HLDI, 2017), Nissan (HLDI,
2021a), BMW (HLDI, 2021b), and Audi (HLDI, 2022). In all cases, rates of
different types of insurance claims were assessed for vehicles with the rele-
vant L2 system equipped and a peer group consisting of vehicles from the
same manufacturer, and typically the same model, without any L2 technol-
ogy. Exposure was measured as insured vehicle years. The specific claim types
assessed included property damage liability, collision, and multiple types of
medical claims.

For three of the four systems studied (Tesla Autopilot, BMWDriving Assis-
tance Plus, and Audi Traffic Jam Assist), statistically significant reductions in
one or more claim types were observed. All other results were indeterminate,
possibly due to small sample sizes. Leslie et al. (2022) also carried out two
studies comparing Cadillac models equipped with GM’s Super Cruise to sim-
ilar Cadillac vehicles without Super Cruise. These included a comparison of
the proportion of crashes involving equipped vs non-equipped vehicles rel-
ative to the proportion of equipped vs non-equipped vehicles in the study
population as well as a quasi-induced exposure analysis. Likely due to small
sample sizes, neither study produced statistically significant results.

Equip/non-equip studies compare vehicles that could potentially use L2
technology to peers that cannot, but they do not include any information
regarding actual usage of L2 systems. This may reduce both the estimated
effect size for relevant technologies as well as the statistical power of hypoth-
esis tests. In contrast, use/non-use studies directly compare crash rates for
the same vehicles when they are or are not using L2 technology. However,
publicly available crash databases do not generally contain sufficient infor-
mation to determine either the state of an L2 system at the time of a crash or
the amount of usage (exposure) for the L2 system (e.g., NHTSA, 2022).

Two studies have been published using manufacturer provided data
regarding crashes with L2 systems in use versus manual driving. Leslie et al.
(2022) carried out a comparison of crash involvement for vehicles using or
not using Super Cruise on “Super Cruise Compatible Roads” to expected
usage rates of Super Cruise based on telemetry data. However, the dataset
was very small (8 relevant crashes), and the results were not statistically sig-
nificant. Tesla publishes crash rates for its vehicles with Autopilot in use and
not in use (Tesla, 2023), but the difference in the raw rates is not entirely
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attributable to the effect of Autopilot. This is because Autopilot is generally
used on highways, where the crash rate is known to be lower than for driving
in general. Goodall (2023) developed a method for “normalizing” the crash
rates that Tesla publishes in a manner that controls for these differences in
road usage.

We have applied the method from Goodall (2023) to the most recent crash
data published by Tesla, adjusting the non-Autopilot crash rate to reflect driv-
ing exclusively on highways. This comparison may slightly overestimate the
comparable Autopilot crash rate, as no adjustment is made to account for
non-highway use included in the rate. The results are shown in Figure 1 and
Table 1. Throughout the reporting period, the Autopilot crash rate is consis-
tently lower than the highway only non-Autopilot rate, and the regression
analysis indicates that this difference is statistically significant. In addition,
the Autopilot crash rate exhibits a decreasing trend throughout the study
period while the non-Autopilot rate appears to be constant.

Figure 1: A comparison of highway crash rates for Tesla vehicles with L2 technology
in use (green) and not in use (blue) using methodology from Goodall (2023).

While studies of L2 systems frequently exhibit indeterminate results due to
small sample sizes, in all cases where statistically significant differences are
observed, they indicate a reduction in crash rates associated with L2 systems.

Table 1. Results of regression fit to normalized Tesla crash data.

Coefficient Estimate P-Value

Intercept 40.39 <2 ×10−16

Time 0.03 0.894
Autopilot Effect −8.38 0.027
Autopilot/Time Interaction −0.99 0.010
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DISCUSSION

This review of non-crash and crash assessments of L2 systems provides valu-
able insights into both types of study. Crash assessments directly measure the
real-world effects of L2 systems. However, they may suffer from lack of data
availability. The lack of statistical significance for all results of the Super
Cruise study (Leslie et al., 2022), as well as multiple results in the HLDI
studies (HLDI, 2017; HLDI, 2021a; HLDI, 2021b; HLDI, 2022), reflect the
challenges in acquiring sufficient data to evaluate the real-world effects of
this relatively new type of technology.

It is also notable that both studies involving comparisons of crash rates
with systems active vs inactive, required information from the manufacturers,
namely, Tesla (Goodall, 2023) and GM (Leslie et al., 2022), and depended
on vehicle telemetry. Equip/non-equip studies are typically carried out when
technology is introduced, and they become less viable as technology becomes
widespread. Therefore, the presence or absence of telemetry as part of vehicle
design may be a critical limiting factor in future studies of L2 technology.

Non-crash assessments can provide valuable insights into design charac-
teristics of systems and can be carried out early in a system’s development
and deployment cycle when real-world crash information is not yet avail-
able. However, these studies must be interpreted with caution, as the effects
predicted based on proxies for crash risk may not be reflected in real-world
assessments. It is particularly notable that the non-crash assessments of L2
systems are mixed, while all crash assessments to date point toward crash
risk reduction associated with these systems.

One possible explanation for these mixed results stems from small sample
sizes (e.g., Endsley, 2017 (1 participant); Reagan et al., 2021 (10 partici-
pants)), or study populations that are not representative of the general popu-
lation of L2 system users. Some studies that are ostensibly about L2 systems
combine true L2 (ACC and lane centering) with L1 systems (ACC + reactive
lane keeping), limiting the ability to generalize the conclusions when applied
solely to either technology type (e.g., Dunn et al., 2009).

Driver familiarity with system performance may also be an important fac-
tor. Trust level (high or low) in automation can lead to changes in driver
behavior and engagement with the driving task, including mis- or nonuse of
technology (e.g., Lee & See, 2004; Parasuraman & Riley, 1997). For exam-
ple, Reagan et al. (2021) found that some of their participants reduced use of
L2 technology over time, which they conclude may have been due to reduc-
tion of trust, and therefore were not included in their analysis of in the second
half of the study. The authors concluded that this may have contributed to
greater differences between the first and second half of the study. Experienced
users may also adapt their level of engagement to the particular driving situ-
ation when the system is in use (Lin et al., 2018; Shutko et al., 2018). This is
also consistent with research that suggests that Tesla Autopilot users report
that they are comfortable looking away from the road “somewhat” longer
even though they also report feeling responsible for the operation of their
vehicle, believe that Autopilot requires supervision, and tend to have similar
eyes-on-road behavior to manual driving (Shutko et al., 2018).
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CONCLUSION

Overall, the literature indicates that driver behavior may be altered by the
use of L2 systems, but there is no indication at this time that these changes
have increased aggregate crash risk. In fact, all statistically significant results
found in the literature point to a reduction in crash risk associated with these
systems. There are also clear opportunities for improvements to non-crash
research, such as ensuring adequate sample sizes and making clear distinc-
tions between L2 and other types of driver assistance technology. Non-crash
assessments will continue to play a key role in evaluating and improving
partial automation systems, and continuous review and improvement to
ensure that these results are generalizable to real-world driving are critically
important.
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