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ABSTRACT

Onboard eco-driving systems that provide speed guidance and encourage fuel and
emission reduction have become increasingly popular. However, such systems may
cause driver distraction, highlighting the need for cognitive attention monitoring capa-
bilities. This study investigates how to accurately detect cognitive distraction when
drivers interact with an eco-driving system in both acceleration and deceleration sce-
narios. Using the random forest algorithm, driving and glance features were extracted
to classify drivers’ cognitive attentional states. Results showed that the glance fea-
ture was the most effective factor for detecting cognitive distraction, achieving 90.8%
accuracy in the acceleration scenario. This study contributes to the design of effec-
tive eco-driving systems that can accurately monitor drivers’ cognitive attention and
enhance safety.
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INTRODUCTION

With the advancement of connected-vehicle technologies, the onboard eco-
driving systems may provide drivers with real-time information about their
driving behavior and traffic conditions, encouraging them to optimize their
driving speed and thus reduce fuel consumption and greenhouse gas emission.
A growing body of research has examined the impact of these systems (see, for
example, Allison and Stanton, 2019) and discovered that implementing these
systems could result in an average of 6.6% reduction in fuel consumption
(ranging from 1% to 30% in Sanguinetti et al., 2020), making eco-driving
an appealing option to protect the environment.

However, using in-vehicle systems, such as eco-driving systems, is usually
associated with driving distractions. Previous studies have demonstrated that
in-vehicle systems usage can involve visual, cognitive, and sometimes manual
distractions (Creaser and Manser, 2013; Liang et al., 2007; Masood et al.,
2020), as using these systems may require drivers to look away from the
roadway to visually obtain information (visual distraction), to take a hand
off the steering wheel and manipulate a device (manual distraction), or to
think about something other than the driving task (cognitive distraction).
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Thus, there are two specific objectives of this study: 1) to examine driver
cognitive distraction from the standpoint of feature selection in the machine
learning model, and 2) to evaluate the model’s accuracy in detecting driver
cognitive distraction when they interact with an eco-driving system in both
acceleration and deceleration scenarios. Using the random forest algorithm
and extracting driving and glance features, this study aims to accurately clas-
sify drivers’ cognitive attentional states and, ultimately, contribute to the
design of more effective eco-driving systems that can monitor drivers’ cogni-
tive attention status and provide visual information only when drivers have
sufficient mental resources to manage it.

METHODS

Participants

Twenty-one drivers (15 males, 6 females), between 18 and 48 years of age
(Mean = 26.11, SD =9.11), were recruited for the driving simulator experi-
ment. Due to the COVID-19 restrictions, all participants were affiliates of the
University of California at Berkeley. The experimenter and all participants
wore masks throughout. All participants had a normal or corrected-to-
normal vision (using contact lenses). One female participant did not finish
the experiment due to motion sickness. Her data were excluded from further
analysis. Therefore, 20 valid users’ data remained for the rest of the analy-
sis. They had an average of 8.5 (SD = 9.7) years of driving experience. The
testing protocol of this study was approved by the university’s Committee for
Protection of Human Subjects (CPHS).

Apparatus

Driving Simulator. The simulator used in this study was Force Dynamics
401cr, a three-monitor, four-axis fully interactive driving simulator (as shown
in Figure 1).

Figure 1: Driving simulator used in the experiment.

Eye Tracker. Pupil-Labs eye tracker was used to record participant’s eye
movement during the experiment (Pupil Labs, 2023).
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Figure 2: Driving simulator scenario with eco-driving interface. On the left of the inter-
face, it displayed drivers’ current driving speed (in mph). In the middle, it shows the
suggested speed (in mph). If the suggested speed was larger than the driver’s current
speed, it would be shown in green color. Otherwise, it would be shown in red color.
On the right-hand side of the interface, it was a color state of the current traffic light
with a timer indicating the remaining time of the current state.

Eco-driving system. A velocity planning algorithm (VPA) model (See
details in Mintsis et al., 2021; Xia et al., 2013) was used as a reference to
implement the eco-driving system’s function. The Python program used for
implementing the algorithm and interface of the eco-driving systemwas based
on the study by Mintsis (2022). Screenshot of the driving scenario is shown
in Figure 2.

Cognitive Distraction Task

The cognitive distraction task in the loaded drives is an N-back task. The
N-back task is a delayed number recall task based on Mehler et al. (2011)
research, which has been frequently used in driving studies as a method to
induce cognitive distraction to drivers.

Experimental Designs

The driving scenarios simulated urban two-lane streets, with a speed limit of
25 miles per hour. The experiment included four drives. The first drive was
the baseline, which was designed for drivers to get familiar with operating
the driving simulator and investigate drivers’ baseline driving performance.
In this drive, we collected participants’ driving performance data before
approaching traffic signal-controlled intersections. The second drive was a
training session in which drivers learned how to follow the speed guidance
from an eco-driving system and perform the N-back task while driving. Par-
ticipants were instructed to drive on a straight two-lane road during this
training section. The third and fourth drives were either the attentive con-
dition or distracting condition. In the attentive condition, participants were
only required to follow the eco-driving system speed guidance. In the distract-
ing condition, participants were required to follow the eco-driving system’s
guidance and perform the N-back task at the same time. The order of the
attentive and distracting conditions was counterbalanced across all partici-
pants, which means a participant’s experiment procedure for the driving part
is either like Group 1 or Group 2 as shown in Table 1.
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Table 1. Experimental design.

Drive Group 1 Group 2

1st Baseline (Learn to use the simulator and
Explore the baseline driving condition)

Baseline (Learn to use the simulator and
Explore the baseline driving condition)

2nd Training (Practice of
Eco-driving + N-back)

Training (Practice of
Eco-driving + N-back)

3rd Eco-driving + N-back (Distracting
Condition)

Eco-driving (Attentive Condition)

4th Eco-driving (Attentive Condition) Eco-driving + N-back (Distracting
Condition)

Each of the third and fourth drives included both acceleration and deceler-
ation scenarios when approaching the intersections. Each traffic signal had a
20-second green, a 3-second yellow, and a 20-second red phase. Acceleration
began with 10 seconds remaining in a green phase, while deceleration began
with 15 seconds remaining in a red phase (as shown in Figure 3).

Figure 3: Driving scenarios in which the eco-car was either accelerating or decelerating
as it approached a traffic light intersection.

Experimental Procedure

Upon arriving at the driving simulator lab, participants were given a brief
introduction of the study. They were asked to read and sign the consent
form and complete a screening questionnaire. Then they were asked to be
seated in the driving simulator and complete the four drives. After complet-
ing the baseline drive and the last two drives, participants were also asked
to complete a Raw NASA-TLX (Hart, 2006) questionnaire, in which the
subjective workload for six items (perceived mental, physical, and tempo-
ral demands, frustration, effort, and performance) was rated on a 20-point
scale. The detailed experimental procedure is shown in Figure 4, with the
four drives highlighted in light blue.

Figure 4: Experimental procedure.
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Data Processing

In the N-back driving condition, an overlapping sliding window technique
was used to segment the epoch of driving. A recent study found that overlap-
ping sliding windows were as effective as non-overlapping sliding windows
(Dehghani et al., 2019). A total of 557 attentive epochs and 537 distract-
ing epochs were obtained in the acceleration case, 1501 attentive epochs and
1606 distracting epochs were obtained in the deceleration case.

Following data processing, the Time Series Feature Extraction based on
Scalable Hypothesis tests (TSFRESH) package was used to complete feature
extraction and reduction in Python (Christ et al., 2017). The data of 16 (out
of 20) participants were used for feature selection and algorithm training, and
the data of the remaining 4 (out of 20) participants were used for algorithm
testing. The number of epochs in the training and test sets is listed in Table 2.
The participants in both the training and testing sets were balanced by age
and gender. A hierarchical clustering based on their Spearman correlations
was adopted to the glance and driving training sets separately. Then one fea-
ture from each cluster was selected to handle the multicollinearity in training
sets. In the end, there were 17 glance features and 51 driving features for
the acceleration scenarios; 24 glance features and 61 driving features were
selected for the deceleration scenarios.

Table 2. Number of attentive and distracting epochs in the training and testing sets.

Driving Scenario Training Testing

Attentive Distracting Attentive Distracting

Acceleration 425 437 120 112
Deceleration 1248 1342 253 264

We utilized a random search with 10-fold cross-validation to determine the
optimal hyperparameters for every feature set in both manual and automated
driving scenarios. Python 3.8 was used to conduct all data analyses.

RESULTS

The optimal hyperparameters for different feature sets were located using
random search in multiple training, which are listed in Table 3.

Table 3. Hyperparameters of the random forest by each feature set.

Scenario Feature Set Number
of Trees

Maximal
Depth

Maximal
Number of
Features in
Individual
Tree

Minimum
Number of
Samples to
Split a Node

Minimum
Number of
Samples for a
Leaf Node

Acceleration Glance 63 3 sqrt 25 14
Driving 175 4 sqrt 10 1
Combined 187 10 sqrt 2 6

Deceleration Glance 49 7 sqrt 47 1
Driving 147 7 sqrt 6 18
Combined 134 7 log2 10 19
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Figure 5 shows the classification accuracy for each feature set in accel-
eration and deceleration scenarios. McNemar’s test showed that in the
acceleration scenario, the combined feature set led to significantly higher
accuracy than the driving feature set (p <0.001), but no significant differ-
ence with the glance feature set (p = 0.210). In the deceleration scenario, the
combined feature set led to significantly higher accuracy than the driving set
(p <0.001) and the glance set (p = 0.005).

Figure 5: The accuracy of random forests based on each feature set. (The error bars
represent the bootstrap 95% confidence intervals.)

The permutation importance analysis was used to discover the top 10
most important features for random forests using the combination feature
set (as shown in Table 4). Glance features were among the most important
features in both acceleration and deceleration scenarios. Several glance fea-
tures were among the top 10 most important features in both acceleration
and deceleration scenarios.

Table 4. The top 10 most important features for combination sets.

Driving
scenario

Feature
set

Relevant Features Reduced
Accuracy (%)

Acceleration Glance norm position y (quantile 0.4) 6.79
Glance norm position y (quantile 0.6) 6.56
Glance eyes on the interface (cwt coefficients) 4.96
Glance norm position y (fft aggregated) 4.90
Glance norm position y (count below mean) 3.08
Glance norm position x (skewness) 3.06
Glance norm position y (count above mean) 2.83
Driving acceleration (change quantiles) 2.53
Driving compliance (fft coefficient) 2.52
Glance eyes on the interface (quantile) 2.41

Deceleration Glance norm position y (quantile 0.4) 4.52
Glance fixation duration (fft coefficient) 4.31

(Continued)
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Table 4. Continued

Driving
scenario

Feature
set

Relevant Features Reduced
Accuracy (%)

Glance norm position x (quantile) 4.03
Glance norm position x (range count) 3.47
Driving steering (approximate entropy) 3.17
Glance fixation duration (cwt coefficients) 3.02
Glance norm position x (skewness) 2.84
Glance eyes on the interface (c3) 2.79
Glance eyes on the interface (variation coefficient) 2.59
Glance norm position y (count below mean) 2.46

Table 5. The accuracy, sensitivity, and specificity of glance-based classifiers for each
testing participant.

Driving scenario Measure P1 P2 P3 P4
Acceleration Accuracy 0.95 0.82 0.95 0.72

Sensitivity 0.90 0.79 0.94 0.64
Specificity 1.00 0.85 0.94 1.00

Deceleration Accuracy 0.89 0.67 0.75 0.76
Sensitivity 0.91 0.72 0.69 0.84
Specificity 0.88 0.64 0.88 0.71

The McNemar’s test results showed that there was no significant differ-
ence between the accuracy of the glance feature and combination feature sets
for the acceleration scenario, but the combination set showed higher accu-
racy than the glance feature set in the deceleration scenario. Therefore, we
evaluated the combination set model using each testing participant’s data to
explore the accuracy, sensitivity (i.e., true positive rate), and specificity (i.e.,
true negative rate). The results are shown in Table 5.

DISCUSSION

The current study established the value of usingmachine learning in capturing
drivers’ cognitive distractions during interactions with an eco-driving system.
Twenty drivers practiced eco-driving under the guidance of an eco-driving
system. Their eye glance and driving performance features were recorded.
This study proved that in the context of eco-driving, the random forest model
demonstrated its efficacy in identifying drivers’ cognitive distractions. The
results showed the glance features’ importance in the random forest classi-
fier. Among the top 10 most important features in the combination set, norm
gaze position for y-axis direction, eyes on the interface, and norm gaze posi-
tion for x-axis direction provided the most important features to determine
drivers’ attention status in the acceleration scenario; norm gaze position for
x-axis direction, norm gaze position for y-axis direction and the gaze duration
accounted for most three important features in deceleration scenario. These
findings were consistent with the findings in previous driver distraction classi-
fication studies, for example Yang et al. (2020). Previous studies also showed
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that driving features led to lower cognitive distraction classification accuracy
(54.4% for support vector machine) than glance features (Liang et al., 2007).
Drivers’ steering control, acceleration, and speed compliance were among
the top 10 most important features in the combination set. The steering
control and acceleration features were also among the most important fea-
tures in Iranmanesh et al. (2018) classification model. This proposed method
may alleviate the distraction and safety concerns associated with using an
onboard information system, thereby improving in-vehicle human-machine
interaction. To our knowledge, this is the first time that a driver’s cogni-
tive distraction has been detected using machine learning techniques while
they are operating an eco-driving system capable of providing real-time road
information and speed guidance in an urban driving environment.

As self-driving technology advances, a camera-based driver monitoring
system has become critical for driving safety. However, this technology should
not be limited to traditional manual driving conditions but should also be
considered in the context of connected and automated vehicle technology.
The eco-driving system is just one instance of these applications. Given that
connected vehicle technology has the potential to provide drivers with a
wide range of real-time road information and driving guidance with a vari-
ety of different objectives (e.g., fuel efficiency, speed harmonization, route
recommendations), we propose that a connectivity-based eco-driving system
should thoroughly consider whether drivers’ cognitive status is sufficient to
perceive and process this information without impairing their driving perfor-
mance. In this study, we demonstrated that a machine learning model such as
the random forest classifier could handle this challenge by leveraging a lim-
ited collection of eye-movement data paired with multiple driving features.
Additional effort will be required to refine the driver monitoring system in
conjunction with the integration of connected vehicle technology so that this
advanced technology can truly assist in achieving the goal of reducing fuel
consumption without impairing driving safety.

Due to the limited sample size and the large number of model parame-
ters, there is a risk of overfitting in this study despite our efforts to prevent
it. To address this issue, a larger dataset with participants of varying ages
and driving experience levels would be beneficial to improve the algorithm’s
accuracy. Additionally, despite our pre-cautious efforts, there is a risk of over-
fitting in this study due to the limited sample size and the large number of
model parameters. To address this issue, a large data set with more par-
ticipants of varying ages and driving experience levels would be beneficial
for improving the algorithm’s accuracy. Third, the cognitive distraction was
triggered by the N-back task. Additional cognitive distraction tasks, such as
peripheral detection tasks or mind-wandering conditions, or more practical
cognitive distraction tasks, such as phone calls, should be investigated in the
future. Thirdly, the driving scenarios used in our study were simplified, sug-
gesting that their ecological validity may be limited. In future studies, it will
be beneficial to expand the experiment to more complex driving scenarios or
real-world driving conditions.
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CONCLUSION

This study extended drivers’ cognitive distraction detection into the con-
text of the presence of an in-vehicle information system based on connected
vehicle technology. We evaluated the effectiveness of different driver fea-
tures in cognitive distraction detection when using an eco-driving system
in both acceleration and deceleration scenarios. The findings showed that
the eye glance features played a more important role than the driving fea-
tures in cognitive distraction classification when drivers were using the
eco-driving system, especially under the acceleration scenario. Additionally,
these glance features revealed the fluctuations of drivers’ cognitive workload
and variations of cognitive distraction performance in the context of using
the eco-driving system. Results in our study also demonstrated the practical
values of using the driver features in detecting drivers’ cognitive distraction
for the design and safe implementation of eco-driving applications. In the
future, a real-time cognitive distraction detection system with dynamic eco-
driving guidance based on drivers’ attentional status should be developed,
and further tested.
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