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ABSTRACT

In-vehicle information system (IVIS), as crucial components in the vehicles, provide
drivers with convenient functionalities but also pose potential safety hazards. Operat-
ing these systems requires visual attention, potentially increasing the risk of accidents.
While previous researches focused on static eye metrics like fixation and saccade,
limited attention has been given to spatiotemporal eye movement characteristics cru-
cial for information acquisition while driving. This study investigated the impacts of
three modalities (voice-based, touchscreen-based, and gesture-based) on spatiotem-
poral characteristics of driver eye movement. Thirty-six participants were recruited
to a simulated driving experiment, with one group acting as baseline without non-
driving related tasks (NDRTs), while others performed NDRTs using one of different
interactive modalities. Scanpaths, fixation entropy, and visual transition probability
matrices were analyzed to understand spatiotemporal characteristics. A new compari-
son method based on ScanMatch algorithm was proposed to measure the similarity of
scanpaths. The K-means clustering was used to identify areas of interest (AOIs), while
Shannon’s equation was applied to calculate fixation entropy. Visual transition proba-
bility matrices were used to normalize the transition counts, revealing areas with the
most transitions. Results showed the voice group’s eye movements closely resembled
the baseline, with higher entropy in driving-related AOIs. In contrast, the touchscreen
group had lower entropy and a higher likelihood of distraction. Thus, voice-based
interaction had the least distracting effect, resembling baseline eye movement pat-
terns. These findings offer insights for designing safer IVIS interactions to reduce
traffic accidents.
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INTRODUCTION

In-vehicle information systems (IVIS) improve driving experiences by offering
drivers secure and convenient services, allowing them to perform non-driving
tasks while driving, thus enhancing overall satisfaction (Ziakopoulos et al.,
2019). However, the widespread use of IVIS has also raised safety concerns.
Using IVIS while driving has been identified as a significant source of driver
distraction, potentially jeopardizing driving safety. Research indicates that
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IVIS usage during driving leads to increased maximum deceleration (Li and
Boyle, 2019), increased off-road fixation duration (Feng, Liu and Chen,
2018; Lee, Kim and Ji, 2019) and more instances of lane departure (Lee, Kim
and Ji, 2019; Ma et al., 2020). The interactive modalities of IVIS directly
influence driver safety, and effective modalities can significantly reduce the
likelihood of traffic accidents. Hence, investigatingmethods tominimize acci-
dents caused by IVIS operation and exploring enhanced interactive modalities
are crucial for driving safety.

Recent researches on the interaction input modalities of IVIS have primar-
ily focused on the impact of three input modalities – touchscreen, voice, and
gestures – on eye movement patterns (Zhang et al., 2023). Feng, Liu, and
Chen (2018) conducted a study on the size and quantity of touchscreen but-
tons, revealing a directly proportional relationship between the number of
buttons and fixation duration. Despite there are extensive researches, most
studies have relied on single eye movement indicators to characterize complex
eye movements.

Common single eye movement indicators such as fixation, saccade, and
saccade speed help in understanding eye movement patterns. However, a key
limitation of analyzing single eye movement indicators is overlooking eye
movement is a complex process. Eye movements involve multiple indicators
like gaze, saccades, and smooth tracking, which often occur together during
information intake. Thus, studying comprehensive eye movement indicators
is vital for understanding scanning strategies.

Based on this perspective, this study uses comprehensive eye movement
indicators to explore the differences in IVIS interactive modalities com-
pared to regular driving. By analyzing eye movement data from experiments,
we assessed how touchscreen, voice, and gesture interactions affect driving
through scanpaths, fixation entropy, and transition characteristics. Com-
parisons were made with normal driving to determine the least impactful
interactive modality. The study aims to offer theoretical insights for future
IVIS design in the automotive industry.

EXPERIMENT DESIGN

Experiment Subject

The experiment recruited 36 participants (24 males, 12 females) with an
average age of 21.2 years (SD = 3.12, min = 19, max = 25), all possess-
ing valid driver’s licenses. All participants were right-handed, had normal or
corrected-to-normal vision, and lacked visual impairments like color blind-
ness. Analysis of variance (ANOVA) revealed no significant differences in
demographic characteristics among the four groups (p > 0.05).

Experiment Equipment

The experiment used a driving simulation system consisting of a computer,
three 27-inch LED displays, a Logitech steering wheel, accelerator and brake
controllers, and a driving seat. UC-win/Road 14.0 simulation software was
utilized to create driving scenarios and collected data at a frequency of 30Hz.



432 Jie et al.

Gesture interaction tasks involved the Leap Motion 2.0 sensor. A PAD was
integrated into the simulator setup. Eye movement data was captured using
Tobii Glasses 3.

IVIS Interactive Experiment and Subtask Design

The experiment’s within-group variable is the interactive modalities (voice,
touchscreen, gestures, and a baseline group with no IVIS interaction), and
the dependent variable is eye movement behavior. Each group, except the
baseline group, completed a series of subtasks during the experiment. These
subtasks involved operating IVIS for actions like navigation, music playback,
volume adjustment, and information reading. Touchscreen interaction uti-
lized the touchscreen, voice interaction used the built-in voice assistant on
a PAD, and gesture interaction was conducted through the Wizard-of-Oz
(WoZ) method.

Emergency Scenario Design and Experimental Procedure

The experiment featured three common emergency scenarios encountered in
real driving: sudden vehicle deceleration, pedestrian crossing at an intersec-
tion, and vehicle malfunction ahead. These events aimed to accurately assess
drivers’ genuine reactions under various interaction modalities. The experi-
ment, outlined in Figure 1, lasted around 60 minutes and consisted of four
phases: pre-experiment preparation, simulation practice, formal experiment,
and experiment conclusion.

Figure 1: Experiment procedure diagram.
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RESULTS

Scanpath Comparison Algorithm

The schematic diagram of the scanpaths encompassing information across
three dimensions: fixation, time, and sequence. In the diagram, the numbers
represent the sequential order of fixations, the size of the circles indicates
the duration of each fixation (larger circles denote longer durations), and the
center of the circles represents the coordinates of the fixation points. As the
scanpath includes the transition information between fixation points, it can
reflect changes in visual attention.

This study utilized the ScanMatch method to compare differences in scan-
paths (Cristino et al., 2010). It excels in evaluating the similarity of scanning
paths in spatial, temporal, and sequential aspects, aligning well with the data
analysis requirements of this experiment. ScanMatch integrates intrinsic asso-
ciative information within AOIs into similarity score calculation through a
replacement matrix (Anderson et al., 2015). The algorithm converts ordered
scanpaths into fixed-order strings, simplifying the comparison process into a
string comparison problem, further optimized using the Needleman–Wunsch
Algorithm (Needleman and Wunsch, 1970). After dividing the experimental
scene into several AOIs, assign corresponding letters to each AOI. Specif-
ically, ScanMatch can also take fixation duration into account. Typically,
50ms is set as one unit, and then fixation durations are encoded proportion-
ally. Encoded strings without fixation duration only represent the trajectory
and sequence of fixations, while those with fixation duration additionally
include the duration of fixations on AOIs.

To compare the similarity between eye movement sequences, the
Needleman–Wunsch algorithm was utilized and this involved setting two
key parameters: the replacement matrix and the gap penalty. The replace-
ment matrix defines the score obtained when aligning two AOIs, and the gap
penalty refers to the score assigned for introducing a gap (an empty space)
to align any elements in the sequence. The total alignment score for two
sequences represents the similarity score of the two eye movement trajectory
sequences.

Considering the impact of length differences on the final score, the
algorithm normalizes the resulting score. The normalization formula is as
follows:

Normalized Score=
S

S1∗N
(1)

Where S is the total alignment score, S1 is the maximum alignment score
in the replacement matrix, and N is the length of the sequence string.

Scanning Path Comparison Results

This study conducted pairwise comparisons of scanning paths within each
group, obtaining similarity scores. The intra-group comparison scores were
then analyzed pairwise, with the results presented in Figure 2. The left part of
Figure 2 shows results without considering fixation duration while the right
part shows results taking fixation duration into account.
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Figure 2: Within-group similarity score variance analysis. “B” stands for “Base-
line”, “G” stands for “Gesture”, “V” stands for “Voice”, “T” stands for “Touchscreen”.
**indicates p < 0.01, and ***indicates p < 0.001.

Figure 2 analysis shows that Gesture-Gesture comparison had the highest
similarity score when fixation duration wasn’t considered, while Baseline-
Baseline had the lowest. ANOVA results revealed voice interaction’s within-
group scores significantly surpassed the other three, indicating more con-
sistent scanning sequences. Baseline group had the lowest mean similarity
score, suggesting diverse scanning sequences. However, when fixation dura-
tion was considered, Baseline-Baseline had the highest similarity score, and
Touchscreen-Touchscreen had the lowest. ANOVA showed Baseline-Baseline
had significantly higher similarity score than Touchscreen-Touchscreen and
Gesture-Gesture. Similarly, Voice-Voice had significantly higher scores than
Touchscreen-Touchscreen and Gesture-Gesture. No significant difference
existed in within-group scanpaths similarity scores between Voice and Base-
line groups, indicating their consistent scanning strategies.

Figures 3 and 4 depict the further analysis of ScanMatch similarity scores
between groups, with Figure 3 showing scenarios without considering fixa-
tion duration, and Figure 6 showing scenarios with fixation duration taken
into account. Post hoc comparisons were conducted using the Game-Howell
test to identify significant differences among comparisons. Each between-
group score corresponds to the analysis of variance for two within-group
scores (considered/not considered fixation time). Therefore, if both were sig-
nificant, a score of 2 was recorded; if one group was significant, a score of 1
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was recorded; and if neither was significant, a score of 0 was recorded. The
significance scores are calculated and illustrated in Figure 5.

Figure 3: Between-group similarity score comparison post hoc analysis (not consid-
ered fixation time).

Figure 4: Between-group similarity score comparison post hoc analysis (considered
fixation time).

The results show smaller within-group differences between the Base-
line and Voice groups compared to the Baseline and Touchscreen or Ges-
ture groups, especially when fixation duration is not considered. Scanning
sequences for Touchscreen and Gesture are more alike. However, considering
fixation duration, the most significant difference in scanning paths is between
the Baseline and Touchscreen groups, while the least difference is between
the Baseline and Voice groups. In both cases, Baseline-Touchscreen scores 2,
and Baseline-Voice scores 1. Taking fixation duration into account increases
similarity between Baseline-Gesture and Touchscreen-Voice groups.
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Figure 5: Between-group significance score results.

Fixation Entropy

In aviation research, entropy is used to quantify the randomness of eye move-
ments, with higher entropy indicating greater randomness or shorter average
fixation durations, as well as scanning across multiple areas. Similarly, in
driving research, Wang et al. (2017) applied fixation entropy to explore dis-
parities in eye movement patterns during distracted driving. Their findings
suggested no clear linear correlation between scanning and improved scan-
ning characteristics. The mathematical formulations for fixation entropy are
as follows:

En=
D∑
i=1

E/Emax

DTxi
(2)

E=
∑

Pxilog2Pxi (3)

Emax=log2D (4)

In these expressions,En stands for the entropy value,E represents the infor-
mation entropy, Emax is the maximum entropy, Pxi denotes the probability
of fixating on a specific AOI,D denotes the number of AOIs, Txi is the aver-
age fixation duration within a certain AOI, and i is the index of the AOI. A
higher entropy rate indicates that the driver, within an equivalent time frame,
fixated on more AOIs. If these AOIs are all related to driving tasks, it sug-
gests a safer driving behavior. This is because it implies that the driver has a
larger visual search scope and frequency, which is advantageous for detecting
potential hazards.

Cluster analysis, as a type of “unsupervised learning,” is utilized when
the label information of the input model is unknown. Its aim is to uncover
the intrinsic characteristics and patterns within samples through learning.
In our study, gaze point coordinates are represented by numerical series,
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with unknown categories, making clustering methods suitable for uncovering
inherent patterns in these coordinates. Consequently, we employed the K-
means clustering analysis method to identify regions and quantities of AOIs.
The only hyperparameter requiring adjustment in this algorithm is K, which
denotes the number of AOIs to be identified.

The clustering analysis method was used to determine the regions and
quantity of AOIs. Different numbers of clusters, K = 4, 5, 6, were chosen.
Through comparing the experimental results and considering the experimen-
tal scenarios, the most suitable number of AOIs was determined to be 5.
Based on this result, the AOIs were categorized as Road, Rearview Mirror,
Dashboard, PAD, and Others.

In this study, we analyzed segments from prompting tasks initiation to
encountering emergencies. We calculated the entropy of these segments and
checked the variance homogeneity of fixation entropy among the four exper-
imental groups. After confirming the conditions were met, we illustrated the
results of the analysis of variance in Figure 6. The findings reveal that the ges-
ture group has the highest entropy, significantly surpassing the baseline and
touchscreen groups. Meanwhile, the voice group’s entropy is notably higher
than that of the touchscreen group. This indicates that the AOIs covered by
gaze in the touchscreen and baseline groups are fewer, with relatively lower
entropy values, whereas the opposite is observed for the gesture and voice
groups.

Figure 6: Fixation entropy analysis results.

Transformation Characteristics

Muñoz, Reimer, and Mehler (2015) introduced modalities for measuring
and visualizing gaze behavior distribution, particularly attention movement
within specific spatial areas. These “attention maps” are most fundamen-
tally represented by a matrix indicating simple transition counts. However,
a limitation of this matrix is its inability to compare transition counts
when the total transitions vary. To address this, a transition probability
matrix was introduced to normalize transition counts and measure transition
characteristics based on transition probabilities.
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Grouped statistics of transition probabilities for all eye movement seg-
ments were analyzed, and the summarized probability transition matrices for
each group are shown in Figure 7. Figure (a) represents the baseline group,
Figure (b) the touchscreen group, Figure (c) the voice group, and Figure (d)
the gesture group.

Figure 7: Analysis results of visual transformation probability matrix.

Summarizing all AOIs, we can know the cumulative probability of fix-
ations on AOIs. Due to rounding, the total sum of probabilities may not
necessarily be 1. The results indicated that the probability of fixations on
the road (to Road) exceeds 40% for all four groups, with the baseline group
having the highest probability at 49%, and the touchscreen group having the
lowest at 45%. The probability of fixations on the PAD (to PAD) was high-
est for the touchscreen group at 46%, and did not exceed 30% for the other
groups. In the touchscreen group, the combined probability of fixations on
the PAD and dashboard (to PAD and to Dashboard) was 91%.

DISCUSSION

The different interactive modalities of IVIS significantly influence both the
convenience and safety of using IVIS while driving. Comprehensive eye-
tracking metrics provide a comprehensive assessment of information gath-
ering, offering a more reliable evaluation of interactive modalities compared
to single indicators. This study suggests that voice interaction has the least
detrimental effect on driving. Consistent with these findings, Zhang et al.
(2023) discovered that touchscreen interaction in commercial vehicle IVIS
led to poorer driving performance, characterized by prolonged reaction times,
reduced minimum time-to-collision, and increased variability in vehicle con-
trol. This decline in driving performance could be attributed to the increased
visual demand of focusing on the touchscreen, resulting in more frequent and
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prolonged glances away from the road. Angelini et al. (2016) also found that
voice interaction requires fewer visual resources compared to touchscreen
interaction, thus having a smaller impact on driving. Moreover, researchers
have proposed alternative analysis methods for scanpaths. Dewhurst et al.
(2012) validated the MultiMatch method for comparing scanpaths based on
geometric vectors, which assesses differences across multiple dimensions such
as shape, length, position, and duration. These findings can inform the design
of IVIS and the development of real-time driver state monitoring systems
(Zhang et al., 2024).

This study still has certain limitations, such as not considering the impact
of the interaction interface on interaction when simulating IVIS. In the future,
the research can be enhanced by incorporating the influence of interaction
interfaces on human-machine interaction, thereby further refining the study
of interactive modalities. Additionally, the experimental scenarios designed in
this study were relatively limited. To enhance the robustness of the algorithm,
it is advisable to introduce a broader range of distracted driving scenarios.

CONCLUSION

This study investigated the impact of three interactive modalities - touch-
screen, gestures, and voice - on driving eye movement patterns through a
driving simulation experiment. The aim was to explore modalities that min-
imize negative effects on driving, reducing the likelihood of accidents caused
by distractions from IVIS. Results indicate voice interaction has the least
negative impact, while touchscreens cause the most distractions. Scanpath
analysis suggests that the eye movement pattern of the voice group is most
similar to the baseline group. Among the four experimental groups, the voice
group has the highest entropy, with 81%probability of scanning AOIs benefi-
cial for driving, such as the road, dashboard, and rearviewmirror. This places
the driving safety of the voice group just below that of the baseline group.
In contrast, the touchscreen group has the lowest entropy, with a 46% prob-
ability of shifting attention to the PAD, an AOI associated with distracted
driving. Therefore, voice interaction is concluded to have the least negative
impact on driving.
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