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ABSTRACT

This study investigates the visual performance of train drivers looking out for objects
under different driving conditions using a driving simulator. A parametric survival
analysis was employed to evaluate the drivers’ reaction times to visual stimuli. The
findings indicate that the reaction time of train drivers was significantly influenced
by the size of objects, the contrast of objects, and the speed of the train. In particu-
lar, larger objects and higher contrast were linked to shorter reaction times. Stimuli
were detected more quickly at higher speeds. Interestingly, the differences between
train protection systems yielded complex results that warrant further investigation.
The research rgives valuable insights into the visual perception performance of train
drivers. Furthermore, the study demonstrates the utility of survival analysis in the
railway domain, particularly for analyzing reaction time data.
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INTRODUCTION

The implementation of Automatic Train Operation (ATO) systems is rapidly
increasing in the railway sector, driven by its potential for improved efficiency,
safety, and capacity. Automation levels, classified as Grades of Automation
(GoA) in urban transit, have also gained traction in mainline railways (IEC,
2010). From GoA3 onwards, the responsibility for safe operation transitions
from train drivers to the automation system. However, one of the key chal-
lenges in implementing ATO systems is defining the functional requirements
of these systems. One approach for deriving the functional requirements is by
evaluating human performance in the driving task. This understanding serves
as a basis for assessing the practical performance realistically achievable by
technical systems.

Today, successful execution of tasks is dependent upon the efficient uti-
lization of train drivers’ senses. Therefore, a comprehensive understanding
of train drivers’ performance, with a specific focus on visual senses, becomes
crucial. This study aimed to investigate the perceptual performance of train
drivers across diverse driving conditions through the use of simulator exper-
iments. The primary metric used to measure performance was the reaction
time to visual stimuli. A hazard-based duration model (i.e. survival analysis)
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was employed to examine the reaction time of train drivers under different
conditions.

BACKGROUND

Considerable research has been dedicated to exploring the visual performance
of car drivers. In the context of railways, there are several studies focused on
the visual behavior of train drivers. The context of these studies includes
the glance behavior of train drivers towards different elements of the visual
scene (Luke et al., 2006) and the visual skills of urban train drivers (Naweed
and Balakrishnan, 2013). A relatively smaller number of researchers have
delved into quantified evaluation of the visual performance of train drivers
under different conditions. These studies include examining the impact of
variables such as train speed and background image complexity on driving
performance and investigating the effects of the visual field of view on signal
detection (Wada and Hataoka, 2020; Guo et al., 2015)

Human visual performance is influenced by a multitude of factors. Key
domains include the properties of the stimulus and the characteristics of
the environment in which it is situated. It has been shown that reaction
time decreases with an increase in the size or area of the stimulus (Bonnet
et al., 1992). Visual perception is also sensitive to colour and bright-
ness (Becker-Carus and Wendt, 2016). Performance of visual perception is
impaired by poor lightning and visibility conditions (Schmidt-Clausen and
Freiding, 2004). The allocation of attention between the driver’s cab and
the outside area influences the detection probability of trackside hazards
(Marinkos et al., 2005; Hely et al., 2015; Naghiyev et al., 2014). Higher
driving speeds lead to the narrowing of the useful field of view (UFOV) (Rogé
et al., 2004). In such conditions, perception of the stimulus could fail if it is
not close to the centre of the field of view. Moreover, the study of Suzuki
et al. (2019) showed that higher speeds were associated with more vertical
and fewer horizontal gaze fixations, while lower speeds involved more hori-
zontal gaze movements. This finding is in line with the results of a study of
simulated car driving, in which higher driving speeds led to faster reactions
to road signs (Cao and Wang, 2004).

Survival analysis is a probabilistic modeling approach for analyzing time-
to-event data to model the probability distribution of the time until an event
occurs (Kleinbaum and Klein, 2012). In a parametric survival model with
accelerated failure time (AFT), the independent error term does not follow
a normal distribution (George et al., 2014). Therefore, this approach could
provide an effective method for analysing reaction time data. In the field
of transportation research, examples of the application of a survival model
include the time to occurrence of a vehicle accident and the time to adoption
of new transportation technologies (Washington, 2020). There are several
studies that apply parametric event time analysis with Accelerated Failure
Time (AFT) to analyze the effects of covariates. Several studies have modeled
car drivers’ reaction times to stimuli (e.g., pedestrians) with cell phone use
as a distraction covariate (Haque and Washington, 2014; Choudhary and
Velaga, 2017; Liu et al., 2021), while Pawar and Velaga (2020) investigated
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the effect of time pressure on reaction times using event time analysis. In
the railroad sector, event time analysis can be found mainly in the areas of
preventive maintenance (Andersson et al., 2016).

METHOD

Materials, study design and analysis methodology are explained in this
chapter.

Study Design

The objective of the simulator experiments was to assess the visual percep-
tion of train drivers during a ride under various conditions. Visual perceptual
performance was defined as the reaction time to visual stimulus. The task in
the experiment was to drive a train and respond to stationary visual stim-
uli in the form of cubes at irregular intervals by pressing the signal horn.
Stimuli appeared at an approximate distance of 800 m from the train. The
study was carried out in a driving simulator of the Department of Rail Oper-
ations and Infrastructure at the Technical University of Berlin (TUB). Stimuli
appeared right next to the track with a maximum 3-meter distance to the
track center. Two different train protection systems were used: PZB (punk-
tförmige Zugbeeinflussung, intermitted train protection system) and ETCS
(European Train Control System level 2 with cab signalling). As a third condi-
tion, driving-on-sight was introduced. On-sight driving refers to the scenario
where train drivers are solely responsible for the safety of the train without
any technical safety barriers. During on-sight driving, train drivers can select
their driving speed, with the maximum allowed speed of 40 km/h. Eight stim-
uli were placed along the 31,5 km long PZB line. The ETCS route (50 km)
included five stimuli. The difference in the number of stimuli between the sce-
narios was caused by the constraints of the simulator setup. The travel times
in the PZB and ETCS scenarios were around 25–30 minutes. The On-sight
route was shorter (6 km, approx. 10–15 minutes) and comprised four stimuli
of different size and contrast. Participants were directed to react as soon as
possible to the identified objects, without consideration whether the object
posed a potential threat. This approach enabled participants to concentrate
exclusively on their sensory capabilities.

Study Variables

Various influencing factors were selected as independent variables to be
manipulated within the simulator environment. The size of the stimuli and
the contrast to the background are two physical characteristics that were cho-
sen as independent variables. Cubes with the edge length of 180 cm and 90
cm were chosen as the stimuli size, which are roughly the length of an adult
and a child. For the high-contrast condition, a bright orange color, the hue of
safety vests (HEX Code #f18e2a), was used. The low-contrast condition was
approximately half the color contrast of the high-contrast condition, resulting
in a brown hue (HEX code #9d6830). The operational parameters that were
manipulated were the train protection system (PZB, ETCS in-cab signalling
and driving on sight) and the train speed (40 km/h, 100 km/h and 160 km/h)
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at the time of the object appearance. The stimuli appeared at 160 km/h only
in the ETCS scenario. Both the ETCS and PZB lines included the 100 km/h
speed level. The stimuli also appeared at 40 km/h in PZB line. Figure 1 shows
a caption from the simulator environment with a high contrast and a low
contrast object. Dependent variable, reaction time, was measured as the dura-
tion from the appearance of the stimulus at a distance of approximately 800
meters until the detection of the stimulus. Activating (i.e. pushing or pulling)
the train horn was employed by the train drivers to confirm object detection.
This action is a similar behavior to the one expected in real world operations
after detecting an object near the track.

Figure 1: Screenshots from the simulator environment.

Participants

18 active train drivers participated in the simulator study. The age of the
participants ranged from 22 to 57 years old (mean= 33,4). Their professional
experience range from 1 to 28 years (mean = 7,3). Participants rated their
familiarity with different types of train safety systems on a scale from one (not
familiar at all) to ten (very familiar). The level of familiarity with the PZB
system received an average rating of 8,3, while the ETCS system averaged
at 2,2.

Data Analysis

First, a descriptive analysis was conducted to summarize the data in terms
of mean and standard deviation values. A Weibull-AFT model was used to
examine the relationship between reaction time and the explanatory vari-
ables. In the model, the event is defined as the detection of the object by
the drivers. Duration is defined as the time taken for participants to react to
the objects. The model was fitted to the dataset using the flexsurv packages
in R (R Core Team, 2023; Jackson, 2016). In the AFT model, the effects of
covariates are modeled directly on the survival function, which eases the inter-
pretation of results and provides better results when more than one covariate
is present (George et al., 2014; Choudhary and Velaga, 2017). For a para-
metric AFT model, the type of distribution for the duration variable is also
required. The Weibull distribution allows for changes in the probability of
an event occurring over time (Kleinbaum and Klein, 2012). Positive duration
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dependence means that the probability of the event increases over time (P>1).
Density function of the Weibull model, where λ and P are the location and
shape parameters of the Weibull distribution, is as follows:

f (t) = Pλ (λt)P−1 exp (−(λt)P)

Hazard and survival functions of the model are expressed as follows:

H (t) = (λP)(λt)P−1 and S (t) = exp[− (λt)P]

The influence of covariates on survival time can be formulated, where X
is a covariate within the vector of covariates (Xi) and ß0−n represents the
coefficients:

λ = exp[−P
(
ß0 + ß1X0 + . . .

)
]

Censored data refer to observations in which the event of interest (i.e.
object detection) has not yet occurred or could not be fully observed within
the study period (Kleinbaum and Klein, 2012). Such censored survival times
underestimate the true time to the event (Clark et al., 2003). Due to the exper-
imental design, the detection of each object by the participants were recorded.
Without censored data, complete information on the occurrence of events is
available for all participants. Therefore, the data provide more information
about the shape of the distribution (Klein and Moeschberger, 2003).

RESULTS

Following sections present the results of the analysis conducted in the study.

Descriptive Statistics

Collected data was preprocessed for completeness. The interquartile range
(IQR) of the actual speeds was calculated to ensure the train speed at the time
of object appearance was in the predetermined speed-level. If the actual speed
deviated from the corresponding speed category by more than three times the
IQR, these data points were excluded from the analysis (five cases). A total
of 287 observations were available after data preprocessing. Table 1 shows
the geometric mean and standard deviation of reaction times for each com-
bination. An examination using survival analysis was conducted to establish
causal relationships.

Table 1. Descriptive statistics of the collected data. Geometric means and standard
deviations (in parenthesis).

40 km/h (OS & PZB) 100 km/h (PZB & ETCS) 160 km/h (ETCS)

High contrast Large 6,35 (2,59) High
contrast

Large 5,99 (1,38)
Small 9,92 (1,89) Small 5,79 (2,87)

Low contrast Large 7,25 (4,21) Low
contrast

Large 6,80 (1,53)
Small 13,44 (1,66) Small 8,07 (1,32)

High contrast Large 7,02 (1,67) High
contrast

Small 5,17 (2,07) High
contrast

Small 4,60 (1,30)
Small 10,80 (1,74) Large 3,41 (1,34)

Low contrast Large 8,51 (1,60) Low
contrast

Low
contrast

Small 4,78 (1,70)
Small 11,05 (2,77) Small 6,74 (3,24)
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Distribution of Reaction Time Data

The comparison of models with different distributions should inform the
decision which type of parametric distribution to use (George et al., 2014).
Therefore, a comparison of model fit parameters using Weibull, Normal and
Log-normal distributions was conducted. The Weibull distribution has the
highest log-likelihood, suggesting that based on this criterion the Weibull dis-
tribution might be the most suitable for describing the data. Both Akaike’s
Information Criterion (AIC) and Bayesian Information Criterion (BIC) are
lower for the Weibull distribution, reinforcing the choice of the Weibull.
The scale and location parameters of the fitted distribution is 1,52 and
10,07, respectively. The fitting curves of the distributions are shown in
Figure 2.

Table 2. Goodness-of-fit statistics for three different distributions.

Distribution Log-Likelihood AIC BIC

Normal -931,9 1867,8 1875,1
Weibull -884,3 1772,6 1779,9
Lognormal -897,9 1799,9 1807,3

Figure 2: Histogram of the reaction times and the fitting curves of three diffent
distributions.

Parametric Survival Model

Model parameters are listed in Table 3. The estimated shape parameter (P) for
the Weibull distribution is 1.85, indicating that the probability of the event
increases with time. The scale parameter reflects the time scale of the survival
outcome and indicates the time at which the event is most likely to occur. The
difference in the log-likelihoods and the significant p-value of the chi-square
test indicate that the model with covariates fits the data better than the model
with the intercept only.
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Table 3. Model parameters of the survival analysis.

Variable Est. 95% CI (L) 95% CI (H) SE Exp (Est.)

Size_90 cm* 0,40 0,26 0,55 0,07 1,49
Speed_ 40 km/h* 0,36 0,17 0,54 0,09 1,43
Speed_ 160 km/h* -0,37 -0,60 -0,14 0,12 0,69
Contrast_low* 0,20 0,07 0,32 0,07 1,22
On-sight 0,13 -0,06 0,32 0,10 1,14
ETCS -0,24 -0,45 0,04 0,11 0,79
Goodness-of-fit statistics Est.: Estimated coefficients.

95% CI (L) and 95% CI (H): Lower and
higher bound of the confidence intervals.
SE: Standard error.
Exp (Est.): Exponentiated coefficients.
Number of observations: 287.
The reference level of the model: PZB, 100
km/h, 180 cm cube, high contrast.

Log-Likelihood -834,4
Log-Likelihood (intercept-only) -884,3
AIC 1684,86
Shape (P) 1,85
Scale (λ) 6,32
Chisq (df)* 99,74 (6)

Three variables significantly influence driver reaction times. These are
object size, contrast between object and its background and driving speed.
Confidence intervals of the estimates for the train control system variable
include the value of zero for both On-sight and ETCS L2 levels. There-
fore, the train control system variable did not reach statistical significance.
The estimates indicate the log time ratios, while the exponentiated estimates
represent the acceleration factor. The negative estimates indicate a decrease
in reaction times compared to the reference level. Exponentiated estimates
indicate the multiplicative change compared to the base level. For exam-
ple, estimated log-time ratio to detect the stimulus for one unit of change
in object size was 0,40. The acceleration factor, exp(0,40), is 1,49. It means
that with the decrease of stimulus size from 180 cm to 90 cm, the stimulus
is detected 49% slower, adjusted for speed, contrast and train control vari-
ables. Using the same approach, object detection at the speed of 40 km/h led
to 43% longer reaction times compared to the reaction at 100 km/h. Similarly,
increase in speed from 100 km/h to 160 km/h led to a decrease in reaction
times by 31%. Objects with lower contrasts were associated with 22% slower
reactions.

Hazard and survival functions can be used to calculate probabilities for
certain conditions. For example, at time-point t=10 seconds, the probability
that the large object will not be detected in the PZB scenario under the base
conditions (S5| pzb) is approx. 9,7% (Figure 4). In order to calculate the
probability value of the small object in the same condition, the variable Xsize
takes the value of 1, while all other variables remain at their mean values or
base levels. The results indicate a 33% probability that the small object is not
detected after 10 seconds of the appearance of the object. The probability
curves of the conditions in the PZB scenario and the probability values at
t = 10 seconds are given in the Figure 3.
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Figure 3: Survival probabilities (i.e. probability of not detecting the object) in PZB
scenario at 100 km/h and 40 km/h.

Comparison of PZB and on-sight driving at 40 km/h shows relatively sim-
ilar survival curves. On the other hand, the probabilities of failure to detect
the objects at 100 km/h in the ETCS scenario are considerably lower than
either of the scenarios at 40 km/h (Figure 4). This could suggest that the vari-
ations observed among train control systems may be attributed to differences
in speeds rather than differences in the train protection systems.

Figure 4: Survival probabilities in ETCS at 100 km/h and in on-sight-driving at 40 km/h.

DISCUSSION

The probability of failing to detect the small object was significantly larger
than the probability of failing to detect large objects. Similarly, higher con-
trast between the object and its background increased the probability of its
detection. This is in line with the widely acknowledged concept that stimulus
intensity, such as size and the differences in brightness or color between the
object and its background, influences reaction time. The present study found
that this effect is a significant factor that increases the probability to detect
objects near tracks, regardless of the train control system used. Increasing
driving speed was also a significant factor that increases the probability of
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the object being detected. These results could support the assumptions on the
verticalization of gaze at faster speeds. It should also be noted that objects
become optically larger more rapidly at higher speeds and are recognized
more quickly. On the other hand, the findings on the relationship between
different train control systems were inconclusive. Unlike the previous find-
ings of varied allocation of visual attention when driving with different train
control systems, the findings of the study did not indicate any significant
differences. One potential reason for this is the differences in track geome-
try between ETCS and PZB routes. Another reason could be the unbalanced
design of ETCS scenario in the experiments, which prevented the thorough
examination of all combinations of factors.

Train driving is a highly complex task and the visual monitoring of the
area along the tracks is influenced by a complicated interplay of factors, not
all of which could be taken into account in the study. The simulated driving
often differs greatly from the real driving situation due to numerous limita-
tions of the virtual environment. Another limitation is that participants were
instructed to react to objects that they detect. The potential effects of expecta-
tion on visual perception as well as decision making regarding the perceived
risk posed by objects were not taken into account. Because the study involved
a relatively short driving duration compared to actual operation conditions,
the adverse effects due to fatigue or diminished vigilance were limited.

CONCLUSION

The study provides valuable findings into visual perception performance of
train drivers. The results of the study revealed that object size, object con-
trast, and train speed had a significant effect on train drivers’ reaction times.
Specifically, larger and more contrasting objects were associated with faster
reaction times. Stimuli were detected more quickly at higher speeds. How-
ever, the findings on the link between different train control systems were
inconclusive. The study demonstrates the application of parametric survival
analysis for analyzing reaction time data in the train driving domain. The
findings of this study have significant implications for the railway indus-
try, particularly in the context of deriving functional requirements of ATO
implementations. The complex relationship between reaction time and train
protection systems and other underlying factors needs to be further investi-
gated in future research. Future studies could also investigate how additional
train driving tasks, such as communicating with the dispatchers or reading
other instruments, influences visual perception performance.
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