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ABSTRACT

With the availability of big maritime data and advancements of the computational tech-
niques, such as machine learning and AI, automation of navigational decision-making
in ships is on the rise. For low risk and more frequently observed cases, such as local
vessels operating in calm sea, abundant data facilitates straightforward automation.
The traditional data driven modelling (including black-box models) and associated
validation techniques suffice the automation process of these cases as human inter-
vention is rarely needed. However, for high-risk and infrequent scenarios, like winter
navigation, data may be scarce, sparse, or imbalanced. Black-box data-driven models
and associated validation techniques prove insufficient in these cases, as the expecta-
tion is for human to jump in and take control over when needed. This paper explores
the role of the human element in various stages of data-driven decision-making for
winter navigation, encompassing the establishment of a multipurpose winter navi-
gation database, model development, and validation. To illustrate, a case study on
ice-breaker assistance operations will be presented.
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INTRODUCTION

With the successful demonstration of world’s first fully autonomous ferry
in 2018, it is anticipated that ship intelligence will continue to reshape the
maritime industry in the coming years. Big maritime data and the advanced
data-driven techniques play a major role in shaping that ship intelligence.
Together they aim to automate some of the major decision makings such as
the navigational decisions made on board.

Automating navigational decisions is straightforward for cases that hap-
pen quite frequently and are relatively low risk. For example, the abundance
of data for local vessels operating in the calm sea allows training the tradi-
tional data driven models (including black-box models) well enough for the
vessel to navigate somewhat autonomously in similar situations. Since the
data also allows for exhaustive testing of the model, the safe envelope for
operation is also quite well known in these cases.

However, for high-risk and infrequent scenarios, like winter navigation,
data may be scarce, sparse, and/or imbalanced. Winter navigation is com-
plex in nature and often takes place under challenging circumstances that
include harsh weather, time constraints, and multiple information sources.
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The conditions are dynamic, and it is difficult to predict precisely how the
circumstances will evolve. Navigating the ship effectively and safely under
such conditions involves identifying important features, recognizing famil-
iarity of current situation with some previously encountered situations, and
taking into consideration the rules and regulations. Nevertheless, attempts
have been made to put together big maritime data for winter navigation in
comprehensive databases (Lensu&Goerlandt, 2019). Andwith the availabil-
ity of such data, development and use of data-driven models have attracted
significant attention in recent time (Montewka et al., 2019). However, it is
understood that both the training and testing of these data-driven models are
limited and it is anticipated that human intervention and manual control in
critical winter navigation scenarios will still be frequent at least in the near
future.

This paper takes a critical look at the various stages of data-driven
decision-making for winter navigation (encompassing the establishment of
a multipurpose winter navigation database, model development, and valida-
tion) and identifies the associated human elements. The human elements here
are discussed from two viewpoints – 1) if and how human is involved in the
different stages and provides input for it and 2) what should be done at dif-
ferent stages so that the end results are understandable, relevant and useful
for the human. The major contributions of the paper include 1) verifying if
the data-driven models used in the context of winter navigation are purely
as objective as they claim to be or do they have subjective element to it and
2) providing suggestions on how to combine the human element (if they are
truly prominent in the different stages of data-driven decision making) with
the technological element to make the data-driven decision making stronger
for winter navigation.

WINTER NAVIGATION: DATA-DRIVEN DECISION MAKING & THE
HUMAN ELEMENT

This section provides an overview of data-driven decision-making and dis-
cusses the human element associated with the different stages of it. Figure 1
presents a schematic diagram of data-driven decision-making. As shown in
the figure, there are 3 main stages. The following subsections discuss them in
detail.

Figure 1: Schematic diagram of data-driven decision-making in winter navigation.
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Establishing Multipurpose Winter Navigation Database

The purpose of this stage is to collect and integrate the different data types
to create a comprehensive winter navigation database. While most winter
navigation decision making involves the usage of some common data such as
traffic information, environmental conditions, and ship specifications, data
need might vary depending on the particular navigation task at hand. For
example, data needed for route optimization in ice-covered water can be very
different than data needed for icebreaker assistance identification (Liu et al.,
2022; Tran et al., 2023). Understanding the appropriate data requirement
essentially necessitates the understanding of the underlying task and identify-
ing the salient features and on-the-job adjustments (Musharraf et al., 2022).
By providing a transparent picture of the decision-making process, subject
matter experts (SMEs), such as experienced seafarers, can significantly con-
tribute to meaningful data acquisition and digitalization needed to establish
a multipurpose winter navigation database.

After data acquisition from appropriate sources, data filtering and cleaning
need to be done to ensure data consistency and compatibility. While there
are data-driven techniques such as the interquartile range (IQR) which can
automatically detect some of the outliers, there are outliers that can only
be detected under the guidance of SMEs who know the practicality of the
operating conditions and are aware of the traffic restrictions, regulations, and
navigation practices for winter. For example, knowing the minimum ship ice
class, minimum ship deadweight, and ship type for certain ice conditions will
allow the detection of anomalies in the traffic data and/or the ice data (Banda
et al., 2016). Data-driven techniques informed by such practical knowledge
would have superior performance in detecting the outliers.

Another important step in pre-processing the data is to label them so that
they can be used later for data-driven models such as supervised machine
learning. There are two ways to label the research data, manual and auto-
matic labelling. Automatic labelling is preferred to manual labelling when the
amount of data is large and time-consuming. For example, Liu et al. (2022)
uses a multistep clustering method to label different navigation modes during
winter navigation (i.e., independent navigation versus icebreaker assistance).
However, a standard benchmark to assess the efficacy of these automatic
labelling methods is almost non-existent. Hence validation of these methods
is often human dependent at the end. For example, Liu et al. (2022) compares
the automatic labelling of icebreaker assistance with the manual records put
by the icebreaker captains in the IBNET (an operational management sys-
tem of winter navigation). This is illustrated in more detail in the case study
section.

Once appropriate data is collected, cleaned, filtered and labelled, the final
step is to integrate them to a comprehensive winter navigation database. It
has to be kept in mind that the data from different sources are of different
types and can come at a different rate. For example, traffic data such as
the AIS data are from terrestrial stations and typically amounts to billions
of messages whereas the ice data come from ice charts and ice forecasting
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models and have much lower sampling rate. A careful mapping of the spa-
tial and temporal data is also essential for a meaningful integration. Again,
while this type of mapping can be done quite automatically be implementing
certain algorithms, validation of the outcomes often depends on the expert
judgement (e.g., is that kind of traffic realistic for that kind of ice condition).

Data-Driven Model Development

Depending on the gathered data, different types of models, such as tra-
ditional models (e.g., semi-empirical model, theoretical model, simulation
model) or data-driven models, can be developed to support winter naviga-
tion decision-making (Lu et al., 2021). Data-driven models have attracted
significant attention in recent time as unlike traditional models they possess
the capability to capture and comprehend information about complex oper-
ational scenarios by learning patterns from large amount of data and usually
have superior performance (Montewka et al., 2019). Data-driven models
have been developed for different research contexts in winter navigation,
including ship performance investigation, navigation patterns identification
and analysis, and risk assessment in ice.

The purpose of this section is not to present an exhaustive list of the dif-
ferent data-driven models developed in the context of winter navigation. The
purpose is rather to provide a few examples and discuss the human element
in the model development and validation process.

Some of the data-driven models are developed under direct guidance of the
SMEs. An example is the commonly used Bayesian network to evaluate the
navigation risk for winter navigation (Li et al., 2017). Here, expert knowl-
edge plays a crucial role in building the network of risk events and defining
the conditional probability for specific nodes in the network.While this intro-
duces subjectivity to the network and the outcomes, it also allows the model
to be relatively more transparent and understandable compared to the other
black box models such as neural networks.

Then, there are data-driven models that do not necessarily involve the
SMEs in the model development process, but they can present results that can
be easily interpreted and explained in human terms. For example, Montewka
et al. (2015) uses the Naïve Bayes model to predict the likelihood of a ship
besetting in ice. Besides a high prediction accuracy, the use of Naïve Bayes
enables understanding of the reasoning behind the prediction.

Some examples of more complex and somewhat black box models include
the ensemble models, artificial neural network (ANN) model, and convolu-
tional neural network (CNN). Kim et al. (2020) and Sun et al. (2022) made
attempts to predict ice resistance for ice-going vessels using such black box
models. Ansari et al. (2021) employed a CNN-based model to detect ice
using ice images. Works such as Raoet al. (2021) applies a range of ensemble
models to solve the same problem (i.e., random forest (RF), XGBoost, and
LightGBM, to predict ship speed in ice-covered waters) and then chooses the
model that provides the best performance.

While the choice of data-driven models for different winter naviga-
tion applications is dominated by the performance measured in prediction
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accuracy, it has to be kept in mind that the ultimate goal of these models is
to assist humans in making decisions that facilitate smooth, safe, and efficient
winter navigation. Therefore, a conscious choice must be made between using
models that are interpretable and using models that are black boxes. The
following subsection discusses the performance evaluation of the different
models. Even when the use of black box models is unavoidable, techniques
such as Shapley Additive explanations (SHAP), and the local interpretable
model-agnostic explanations (LIME) can be used to enhance interpretability
by visualizing feature interactions and computing the importance values for
all features.

Performance Evaluation

With the abundance of data-driven models such as machine learning (ML)
algorithms, it is difficult to choose one that best fits the purpose at hand.
Having a clear list of the different performance criteria and developing a
performance matrix that aligns with the purpose of the ML application is
essential for it to be useful. For supervised ML algorithms, prediction accu-
racy, precision and recall have been the primary performance criteria in most
literature (Sokolova & Lapalme, 2009). These are often calculated using a
confusion matrix. The confusion matrix is a table that visualizes the per-
formance of a classifier (Fawcett, 2006). As shown in Table 1, the matrix
presents howwell the classifier can distinguish the different classes. Equations
(1)–(4) show how accuracy, precision, recall, and F1-score can be calcu-
lated based on the confusion matrix. The higher the values, the better the
performance of the classifier.

Table 1. Confusion matrix visualizing classification performance.

Classification
assistance
operation

Classification
independent
operation

Actual assistance operation (P) True positive (TP) False negative (FN)
Actual independent operation (N) False positive (FP) True negative (TN)

Note: P presents positive (Assistance operation); N presents negative (Independent operation).

Accuracy =
TP + TN

TP + TN + FN + FP
=

TP + TN
P + N

(1)

Precision =
TP

TP + FP
=

TP
Total classified as assistance operation

(2)

Recall =
TP

TP + FN
=

TP
Total actual assistance operation

(3)

F1− score = 2 ∗
Precision ∗ Recall
Precision + Recall

(4)

Besides these most commonly used criteria, the other criteria occasionally
used include – the size of the training data and number of features, speed
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or training time, linearity, and scalability. However, as discussed in the pre-
vious section, given that most of the ML applications in winter navigation
is intended to be used by humans at the end (for example in building an
intelligent decision support system for seafarers), the traditional performance
matrix needs to be extended to include criteria such as explainability, trans-
parency, and trustworthiness of the ML models. It is also evident that even
with such an extended matrix, there will be further challenges, such as how to
effectively measure those criteria, and tackling those challenges will involve
human participation (e.g., measuring trust using a validated questionnaire
during simulation) (Houweling et al., 2024).

CASE STUDY: ICEBREAKER ASSISTANCE OPERATION

This section takes the icebreaker assistance operation in the Baltic Sea as a
case study and discusses the human elements in data-driven prediction of
icebreaker needs in the Baltic Sea during for a winter period (January 15
to February 15, 2018). The Finnish Swedish winter navigation system is in
charge of ship operations in ice-covered waters in the Baltic Sea. Relying on
ice services, weather information, and traffic restrictions, icebreaker assis-
tance may be needed for merchant vessels traveling to a certain port. To keep
ships from getting beset in ice, captains from icebreakers or merchant ves-
sels estimate whether assistance service would be needed. There are multiple
factors that need to be considered such as ice factors (e.g., ice type, ice con-
centration, ice thickness, the movement of ice), ship specifications (e.g., ice
class, deadweight), and weather information (e.g., wind speed). Once the IB
assistance is confirmed to be needed, icebreaker captains will make decisions
on the order in which assistance will be provided to the vessels in need.

The following subsections discusses the database development, model
development, and performance evaluation for the icebreaker assistance pre-
diction and points out the human element involved in these steps. For this
case study, SMEs refer to 4 academics with 10+ years of experience in dif-
ferent aspects of winter navigation research and 3 practitioners all of whom
were certified nautical officers and had experience of winter navigation in
the Baltic Sea and Finnish-Swedish winter navigation system.

Expert Knowledge to Complement the Database

The data used for the icebreaker assistance prediction was collected from
3 main sources – Automatic Identification System (AIS), Helsinki Multi-
category sea-ice model (HELMI), and IBNet. A clear data requirement for the
purpose of assistance prediction was not directly available. Liu et al. (2023)
conducted a systematic literature review to make a comprehensive list of fac-
tors that can affect the icebreaker assistance. Comparing the list with what
was available through the 3 different data sources, some gaps were identi-
fied. For example, ship factors such as ship hull information, ice factors such
as brash ice and ice floe size, and weather factors such as current and wave
were missing in the data sources. SMEs were involved at this point to discuss
the feasibility of a data-driven decision-making. It was discussed that some
gaps in the data, like considering the sea surface temperature constant for the



The Human Element in Data Driven Decision Making for Winter Navigation 693

study period, would not significantly misguide the findings. However, there
were missing data, such as ship hull details, that are expected to have a non-
negligible effect on the need for icebreaker assistance, and it was suggested
that the limitation the missing data poses on the performance of the data-
driven model must be kept into consideration. The discussions also included
understanding the possible correlation between the features and investigating
if data on one factor can complement the missing data on another. For exam-
ple, it was discussed that ice speed exhibits a strong correlation with wind
speed and ice compression is primarily driven by the combined forces of wind
and ice ridges (Pärn et al., 2007). Thus, the inclusion of the wind speed par-
tially mediates the issue of not having direct data on ice compression and
dynamic ice.

SMEs were involved in the data filtering and cleaning procedure by pro-
viding relevant information on traffic restrictions and navigation practices.
The Finnish-Swedish Winter Navigation System proposes traffic restrictions
in the Baltic Sea to constrain the vessels. Given that there is a minimum dead-
weight and ice class requirement for vessels to qualify for assistance in certain
ice conditions (FSICR, 2021; SMHI, 2023), only merchant vessels larger than
1300 DWT and ice class higher than II were considered for the study period.

As briefly mentioned in the previous section, to automatically label the dif-
ferent navigation modes, the multistep clustering method was used. However,
to validate the outcomes, the automatic labels were compared to the records
manually put into the IBNet system. In the IBNet system, the name of the
serving icebreaker, the starting and ending time of the assistance, the depar-
ture and arrival port, and the assistance duration are manually recorded by
crews on board of the icebreaker. These manual records are treated as the
true labels to assess the efficacy of the automatic labeling. The result showed
that the automatic labeling worked with 99.6% accuracy.

The data integration at the end was done fully automatically in this case
study and human involvement was not necessary.

Need for Model Explainability and Transparency for Trustworthiness

Once the database development was completed, a data-driven model, binary
logistic regression, was used for icebreaker assistance prediction. In binary
logistic regression, the need for icebreaker assistance is modelled as a func-
tion of the various factors (e.g., ship factors, ice factors) available in the
database, and the outcome is presented in the form of a regression equa-
tion. The equation elucidates what features have a significant effect on the
icebreaker assistance need, whether the effect is positive or negative, and
provides a measure of the significance of the factors by their correspond-
ing coefficients. The analysis indicates that ridge ice concentration has the
most significant impact on the need for icebreaker assistance, with a positive
coefficient of 1.017. The higher the ridge ice concentration, the higher the
probability of the need for icebreaker assistance. The model prediction per-
formance was evaluated by Eqs (1)–(4), achieving 80.8% accuracy, 81.0%
precision, 80.8% recall, and 80.7% F1-score. However, SMEs were also
involved in interpreting and verifying the results ensuring that the findings
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of the data-driven model were well aligned with expert empirical knowl-
edge. To improve the model prediction performance, different ML models
can be employed in the next research phase, such as decision tree classifier,
K-Nearest Neighbors model, and ensemble models.

Performance Evaluation Through Human-in-the-Loop Testing

As discussed in the previous performance evaluation section, the traditional
performance matrix should be extended to include performance criteria such
as explainability, transparency, and trustworthiness. A clear picture of how
these criteria will be measured is still at the developing stage for the case study,
but the plan includes performing a human-in-the-loop experiment using a
simulated winter navigation environment (Kulkarni et al., 2022). The data-
driven models for the icebreaker assistance prediction will be integrated into
a few virtual ships in the simulation. As these ships navigate and make deci-
sions, theywill be communicated to the SMEs participating in the experiment.
Due to the explainability and interpretability, the SMEs can review both the
decision outcome and the logic behind it. The SME can then provide feed-
back regarding 1) if /how the decisions made are similar or different than
their own 2) if/how the logics behind them are similar or different than their
own and 3) how the system ranks in critical decision-making in their opinion.

DISCUSSIONS AND CONCLUSION

As aimed the paper took a critical look at the data-driven decision making for
winter navigation. It was revealed that there was a human element present
in all the different stages, such as multipurpose winter navigation database
development, model development, and validation. From data acquisition to
data integration, human element is critical at every step to either fill in the
gaps in the data itself or to guide the process. At model development and
validation stages, consideration of human element is also found to be critical
to ensure we don’t only build models that are accurate but also ensure that
they are understandable, trustworthy, and useful at the end. Understanding
the role of human element in data-driven decision-making for winter navi-
gation reveals that these models are not as completely free of subjectivity as
they claim to be. It also shows that for superior ship intelligence we need
to combine both the technological and the human element, at least until
winter navigation data increase in large amounts and uncertainties get much
lower.
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