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ABSTRACT

This paper introduces the General Automation Level Allocation (GALA) framework as
a response to recognized limitations in existing Level of Automation (LoA) frameworks
commonly used in the development of sociotechnical systems. Existing frameworks,
while contributing significantly to human-automation interaction design, face some
challenges in dealing with new systems, including potential limited precision in
categorizing LoA, limited support for identifying outcomes of human-automation-
interactions, missing relevant function types automation, and inadequate means for
addressing dynamic task allocation between human and automation. GALA addresses
these issues proposing a classification of automation based upon types of automa-
tion according to the stages of a human information processing model and levels of
automation at each of those stages. It provides the flexibility and precision needed
in designing new systems, while staying compatible with previous frameworks and
well-established methods for studying human-system collaboration (such as hierar-
chical tasks analysis). The paper concludes with plans for validating GALA framework
to study its applicability across diverse sociotechnical systems.
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INTRODUCTION

Automation, as classically defined by Parasuraman and Riley (1997) as “the
execution by a machine agent (usually a computer) of a function that was
previously carried out by a human”, has evolved into a fundamental ele-
ment within contemporary sociotechnical systems due to its potential for
enhancing efficiency, streamlining processes, and responding to the escalating
complexity of tasks. Furthermore, the capacity of automation to influence
and optimize the distribution of tasks in real-time within sociotechnical
systems provides a foundation for adaptive task allocation based on chang-
ing conditions and priorities. Critical aspects for characterizing principles
of dynamic task allocation involve grasping how to integrate automation
into collaborative activities and determining the optimal extent to which it
should share information and participate in decision-making with humans.
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These objectives may be attained through a structured approach employing
so called Levels of Automation (LoA) taxonomies. These are categorization
systems designed to provide structured means to understand and classify
the types and degrees of automation in a system or the tasks within. Such
frameworks are either one or two-dimensional. Representatives of the for-
mer type just cover multiple levels of automation ranging from “manual
performance”or “full automation”of the task under analysis to full automa-
tion”. Frameworks of the later type are structured based upon the stages of a
human information processing model (e.g. Parasuraman et al., 2000) or the
OODA-Loop (see Proud et al., 2003). After selecting the stage applicable to
the task under analysis, the degree of automation is determined in a second
step. The variation in the number of automation levels across frameworks
arises from distinct categorizations, different granularity perspectives, spe-
cific application domains or technological advancements (Vagia, Transeth,
and Fjerdingen, 2016). Despite this diversity in taxonomies, shared themes
persist. These include shift from lower human control to increased automa-
tion within the framework, gradual decrease in human involvement with
heightened system automation, and human-machine-interaction concepts,
e.g. the potential for human intervention at automatic task conduction.

STRENGTHS AND WEAKNESSES OF EXISTING LOA FRAMEWORKS

The benefits of utilizing LoA frameworks relate to the understanding, eval-
uation, classification, and selection of the degree of automation within a
system or task, such as: (1) Aiding in the design of automation systems by
identifying potential advantages and challenges associated with each level of
collaboration; (2) Providing support in understanding the implications and
challenges of task allocation between humans and systems, encompassing
aspects relevant to human factors and safety analysis; (3) Standardizing con-
cepts and language across the diverse professionals and stakeholders involved
in the design and development of new technology, along with the associated
procedures and policies.

However, despite the merits of existing LoA frameworks, certain lim-
itations are present, including: (1) Insufficiency in representing levels for
certain functions automation can be applied to. Certain LoA frameworks
may struggle to capture relevant functions automation can be applied to, such
as the analysis of data gathered by sensors to provide systems state assess-
ments. One dimensional Frameworks can be criticized for not differentiating
between the human information processing stages (i.e., information acqui-
sition, information analysis, decision selection, and action implementation).
Those taxonomies have problems when classifying, for instance, a technol-
ogy with a high level of automation for decision selection but a low level
of support for action implementation, resulting in a lack of a corresponding
unambiguous “level of automation”. (2) Challenges in assigning LoA lev-
els to the functions given by the frameworks. The differentiation between
certain LoA may necessitate extensive knowledge in a specific domain, such
as psycho-physiological expertise for assessing the levels of automation in
a “perception task,” where distinctions between the concepts of “sensa-
tion” and “perception”may be intricate. Additionally, for some frameworks,
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these distinctions may not always be clearly defined for all cases, lead-
ing to difficulties in assigning and/or discerning between different levels or
types of automation even among experts. (3) Difficulties in determining out-
comes of human-automation interaction at different LoA across the types of
automation. Various LoA may exhibit unforeseen behaviors not considered
during task allocation. For instance, assigning a high level of automation to
action implementation could introduce a supervision task, which may not
arise when lower levels of automation are assigned. This challenge becomes
more pronounced in the presence of novel or undefined tasks, particularly
when Artificial Intelligence learning capabilities are involved in discussions
concerning safety-related implications. (4) Insufficient characterization of
complex and/or novel human-machine cooperation (Miller, 2005). Current
frameworks may fall short in adequately characterizing human-machine
cooperation, often adopting a binary (man OR machine) view of automation
(Dekker and Woods, 2002) rather than focusing on the question of “How
do we make them effectively collaborate?” (5) Lastly, existing frameworks
may not fully account for the dynamic allocation (adaptive and/or adaptable)
of tasks and responsibilities based upon changing conditions and real-time
priorities in non-fixed automation. The capability to dynamically allocate
tasks in complex environments necessitates a comprehensive and flexible
framework.

How to Address Open Issues

In light of these limitations, certain researchers argue that there is no imper-
ative to delve further into LoA taxonomies as foundations for designing
complex systems (Bradshaw et al., 2013; Jamieson and Skraaning, 2018).
Despite these criticisms, LoA frameworks still continue to play a crucial role
in systems engineering. This is because mapping functional capabilities and
allocating tasks between human and automation provides a fundamental con-
ceptual basis for designing system interfaces. Engineers must still consider the
parallel interaction between humans and machines in order to outline and
model teamwork approaches for effective interface design. Understanding
what the human and computer / robot / virtual assistant are each doing and
how they depend on each other, is still essential for effective system design
(Ali et al., 2022). Once the range of functional distributions for a domain
is identified, designers can discuss how various LoA can be presented to
optimize system performance. In order to address the open issues and lim-
itations of current LoA frameworks, it can be interesting to dive deep on
the underlying concepts behind them (Bradshaw et al., 2013). For instance,
some improvements can be done regarding the application of human infor-
mation processing concepts used for types of automation in two-dimensional
taxonomies (i.e., information acquisition, information analysis, decision
selection, and action implementation) which may be too simplified when
applied to new types of technologies (i.e. those stages were created having in
mind the “human-computer” interaction and not with AI-based technologies
for instance). The definitions put forth by Parasuraman et al. for the informa-
tion processing stages used in some frameworks, consider cognitive nominal
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stages that might not comprehensively account for the influence of operator
task experience, complacency, and heuristics on the delivery of system func-
tions in complex systems. Moreover, the distinction between perception and
action, in the context of embodied cognition, should be considered. Embod-
ied cognition (e.g., Saphiro, 2019) emphasizes that human cognition is not
limited to the brain but is interconnected with the body and its interactions
with the environment, especially in skill-based behaviors. For instance, the
differentiation of the skill-based stage (that involves automatic and intuitive
actions rooted in learnedmotor patterns) vs the rule-based stage (that adheres
to predefined rules to guide actions and decision-making) vs. the knowledge-
based stage (that entails higher-level cognitive processes based on explicit
knowledge and reasoning) could be beneficial to have a more precise model
of “information processing” and “action implementation” stages. All these
perspectives suggests that automation system design could consider to encom-
pass not only cognitive aspects in nominal situations, but also the physical
and sensory elements of human-system interaction beyond human informa-
tion processing, not to mention other relevant factors such as teamwork,
trust, and other factors.

The GALA Framework

Taking these factors into account, the human factors engineering team in
Manching of AIRBUS Defence and Space GmbH has developed a framework
called General Automation Level Allocation (GALA). This framework incor-
porates the strengths of previous frameworks while also addressing some of
their limitations (as discussed above). The GALA framework strives to fill
the gaps by assigning specific levels for each function type, acknowledging the
dynamic nature of task allocation, and fostering understandability of human-
automation collaboration when applying its types and levels of automation
at describing modern human-machine systems.

The GALA framework employs a two-dimensional approach, striving for
compatibility with previous frameworks while being versatile in generating
designs for future systems and facilitating dynamic task allocation in real-life
scenarios. According to the framework, each task under analysis will first
be classified based on the four stages of the human information processing
model presented in Parasuraman et al. (2000). For each of those types of
automation, the taxonomy provides six levels of automation, ranging from 0:
no support to 5: fully automated. This amount of levels was chosen because it
is still quite manageable for the analyst and at the same time offers sufficient
granularity to distinguish all relevant aspects between the levels. By incorpo-
rating two pivotal dimensions (levels and types of automation), the structure
is similar to other two-dimensional frameworks, e.g. the one of Save et al. or
the one of Proud et al. (2003). However, in contrast to previous taxonomies,
the levels are defined in a generalizable way so that they can be applied to
tasks in systems of various domains. To promote the practicality and con-
sistency of its usage, each level shares the same common meaning across all
types. For example a LoA of 0 means always that the human operator per-
forms the function without any automation support just relying on low-tech
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artefacts, such as binoculars for the stage “information acquisition” or pen
& paper for the stages of “information analysis” and “decision making”.
To enhance its usability further, it offers tools to select appropriate levels,
including a decision tree. While the stages of the framework are drawn from
the information processing model proposed by Parasuraman, Sheridan, and
Wickens (2000), similarly to the LOAT taxonomy (Save et al., 2012), GALA
levels are primarily defined based upon thorough analysis of the following
“one-dimensional” frameworks: the PACT framework (Tayorl, 2001), the
“ten levels of automation for human–computer decision making” proposed
by Sheridan, Verplanck and Brooks (1978) and the “levels of control and
automation” by Endsley and Kiris (1995) and Endsley and Kaber, (1999).
Next to considering existing frameworks, the LoA definition involved incor-
porating elements of adaptation compatible with coactive design methods
(Johnson et al., 2014), simplification, combination, and integration in line
with the state-of-the-art knowledge on the subject. The development also
took into account the empirical experiences of the AIRBUS Human Factors
Team, gained through the team’s direct use of these frameworks in vari-
ous projects over the years. Furthermore, efforts have been made to at least
consider the applicability of GALA across domains (Barbieri et al., 2022),
signified by the “General” reference in the acronym.

In the context of system design, the GALA framework provides means to
assign automation levels for each pertinent task derived from a task analysis
or for any function requiring design or assessment. Initially, the GALA frame-
work mandates the identification of relevant information processing stages
(A, B, C, D) associated with the task or function. Then, GALA requires the
determination of appropriate levels or a range of levels of automation for each
implicated stage (0, 1, 2, 3, 4, 5). To facilitate this process, GALA provides
a decision tree complemented by triggering questions. These resources are
designed to assist in allocating suitable automation levels for the respective
information processing stages and enhance the understanding of implications
on human-automation performance.

Table 1. Levels of automation according to the GALA framework.

Level Type A Information Acquisition B Information Analysis C Decision Selection D Action Implementation

0 No Support
No or only
low-tech artefact
support

Operator acquires relevant
information directly (not
mediated via display),
might include usage of
low-tech artefacts (e.g.
binoculars)

Operator compares,
combines and analyses
different information items,
might include usage of
low-tech artefacts (e.g. pen
& paper)

Operator generates
decision alternative(s) and
selects (chooses and
confirms) the appropriate
one, might include usage of
low-tech artefacts

Operator executes and
controls all actions, might
include usage of low-tech
artefacts

1 Low Support
Simple function
under control of
operator

Sys acquires & provides
information to operator

Sys conducts “simple”
analysis operations
corresponding to lower
level of cognitive skill (e.g.
comparing information to
detect differences, making
linear predictions)
Support is based on user’s
settings

Sys generates & provides
feasible decision
alternative(s) and/or assists
operator by generating
decision alternatives (e.g.
by evaluating them)
Operator can select one of
those, modify it or can
generate and select an
alternative option

Operator initiates action
implementation and is
prime executor
Sys executes part(s) of the
action and/or provides
execution support (e.g. by
constraining action space)
Operator is able to
monitor, modify and/or
interrupt at any time

(Continued)
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Table 1. Continued

Level Type A Information Acquisition B Information Analysis C Decision Selection D Action Implementation

2 High Support
Complex function
under control of
operator

Sys acquires & provides
information to operator
Sys supports by integrating
data, filtering and/or
highlighting information
Support is based on user’s
settings

Sys conducts “complex”
analysis operations
corresponding to higher
level of cognitive skill (e.g.
interpretation,
classification, complex
predictions)
Sys might trigger alerts
Support is based on user’s
settings

Sys generates & presents
one or more feasible
decision alternative(s)
Sys preselects (chooses but
doesn’t confirm) one
decision alternative
Operator can approve
preselection or can generate
and select a different
decision alternative

Sys executes full action
sequence
Operator initiates action
implementation or
approves sys initiation
proposal
Operator is able to
monitor, modify and/or
interrupt at any time
The operator must be ready
to intervene
(interrupt/adapt)
immediately at any time

3 Supervised
Automated
function
under supervision
by operator

Sys acquires & provides
information to operator
Sys supports by integrating
data, filtering and/or
highlighting information
Support is based on criteria
set by sys or at design-time.
Criteria are still modifiable
by the operator

Sys conducts analysis
operations corresponding
to higher cognitive skill
level (see above)
Sys might trigger alerts
Support is based on criteria
set by sys or at design-time.
Criteria are still modifiable
by the operator

Sys generates & presents
one or more feasible
decision alternative(s)
Sys preselects one decision
alternative
Operator has adequate
time to veto before
automatic decision
implementation (in case of
veto, the “fallback” should
be specified)

Operator or Sys initiates
action implementation
Sys executes full action
sequence
The operator is able to
monitor, modify and/or
interrupt at any time
The operator must
intervene within a
reasonable time, when
prompted by the system

4 Monitorable by
Operator
Automated
function
sometimes
checked by
operator

Sys acquires & provides
information to operator
Sys supports by integrating
data, filtering and/or
highlighting information
Support is based on criteria
which are set by sys or at
design-time
Criteria are
visible/accessible but not
modifiable by the operator

Sys conducts analysis
operations corresponding
to higher cognitive skill
level (see above)
Sys might trigger alerts
Support is based on criteria
set by sys or at design-time
Criteria are
visible/accessible but not
modifiable by the operator

Sys generates feasible
decision alternative(s)
Sys selects one of those
autonomously (no further
approval by operator
needed)
Operator is only informed
about the decision

Operator or Sys initiates
action implementation
Sys executes full action
sequence
Operator can monitor and
interrupt

5 Fully
Automated
Fully Automated
function
completely
decoupled from
human

Sys acquires information
Sys integrates and filters
data
Support is based on criteria
which are set by sys or at
design-time
Criteria are neither visible
nor modifiable by the
operator

Sys conducts analysis
operations corresponding
to higher cognitive skill
level (see above)
Sys might trigger alerts
Support is based on criteria
set by sys or at design-time.
Criteria are not
visible/accessible and not
modifiable by the operator

Sys generates feasible
decision alternative(s)
Sys selects one of those
autonomously (no further
approval by operator
needed)
Operator is not informed
about decision

Sys initiates action
implementation
Sys executes full action
sequence
Operator cannot monitor
or interrupt action

Classifying Concrete Automation Example With the GALA Framework

Consider the AMAN (Arrival Manager) as an example for classifying dif-
ferent automation levels. AMAN is a tool designed to automate sequencing
arriving traffic at an airport by providing advices for air traffic controllers
(ATCOs). It continuously calculates arrival sequences and times for flights,
utilizing a combination of flight-plan information, radar data, weather
details, local airspace, route information, and an aircraft performance model
in trajectory prediction. This results in a ‘planned’ time for each individ-
ual flight, provided to the ATCO and required time suggestions (e.g. Time
to Lose/Gain information). The controller is then responsible for confirm-
ing and applying an appropriate method (vectoring, path stretching, speed
changes, or holding) for the aircraft to meet its advised time or position in
the sequence. According to GALA framework, in nominal situations, it would
be possible to assign high-level of automation to the information analysis
tasks (e.g. level A3: system acquires information according to criteria that,
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if/when needed are visible modifiable by the ATCO), and for the calcula-
tion analysis tasks (e.g. B5: the system conducts complex analysis and the
operator is informed of the results). At the same time, it could be possible
to assign low-level of automation to the decision tasks (e.g. C2 for vector-
ing: system can preselect some advisory to be approved e.g. “L2 - lose 2
minutes to fit position in the sequence”) and low levels to action implemen-
tation tasks (e.g. D0 as the ATCO provides the actual vectoring instructions
to the aircrew). In an increasingly complex traffic environment, to improve
runway arrival throughput, while ensuring a safe separation of aircraft and
avoid mental overload of the responsible ATCO, the relationship between
human and automation may require a change, for instance by providing the
controller with more tools for decision making and action implementation.
Designing AMAN improvements and integrations could require to maintain
the same automation levels for information acquisition (A3) and analysis
(B5), but could dynamically increase (whether adaptive or adaptable) deci-
sion making levels (e.g. up toC3 by pre-selected aircraft instructions for early
delay absorption, vetoable by ATCO) and action implementation (e.g. D4:
provide controlled time of arrival to the aircraft, monitorable by ATCO).

Future Directions

The GALA framework, briefly introduced in this paragraph, repre-
sents its initial version, and it is currently subject to ongoing val-
idation and refinement process. This process aims to incorporate
diverse perspectives and tools, resulting in more nuanced and com-
prehensive taxonomies that capture the intricacies of automation in
human-machine systems. The validation will: (1) refine and final-
ize the framework, considering allocation to the so called “indivisi-
ble tasks” or novel tasks arriving at uncertain times (Tsarouchi et al.,
2017); (2) seek improvements in performance outcome predictions
through empirical data; (3) develop modeling templates for human-
automation cooperation and emerging tasks, applicable for safety assess-
ments and the integration of other frameworks used in designing human-
autonomy joint teaming activities; (4) Enables dynamic task allocation
at the operator level, incorporating a dedicated GALA-O taxonomy;
(5) Produce empirical data by applying the framework to technologies with
various automation modalities and from in-depth discussions with subject
experts in different domains, in order to infer task performance in reason-
ably complex systems and construct knowledge and extract design principles
for integration into models.
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Figure 1:Decision tree to determine the LoA of a system or function according to GALA.
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CONCLUSION

Levels of Automation frameworks are important and useful tools. The
mapping and classification of tasks based on info processing stages and the
allocation of LoA are required for the design of human-machine-interaction
concepts. Once the range of functional distributions has been identified it
could be possible to proceed to discuss how to optimize the joint human-
machine performance, or assess trade-offs and risk of interactions with
automation. Although this mapping may be complex, it does not necessary
mean that using structured Levels of Automation frameworks is preventing
“teamwork analysis”. On the contrary, it may be difficult to understand how
to begin to identify the “things the human depends on the computer for” or
“things the computer depends on the human for” if we do not consider before
what things the human and computer (each) may be doing (Kaber, 2018).
These insights collectively underline the necessity of considering a more
dynamic, adaptable, and context-aware approach when applying LoA frame-
works, recognizing the intricate interplay of psychological factors and the
dynamic nature of real-world operational environments. Better taxonomies
may be required, but still taxonomies are required for system design. Overall,
the resulting GALA table and decision trees, provide an overview of automa-
tion levels associated with the respective information processing stages. This
overview can be useful for matter and non-matter experts for: assigning and
discussing appropriate/required LoA, as it supports shared understanding of
automation; during the design and evaluation of tasks and its implications
(e.g. emerging tasks, workload and SA assessments, etc.); for the applica-
tion of additional frameworks (e.g. in case of joint/shared human and high
levels of automation activities); in ethical considerations; and for analyzing
observability, directability and predictability of automation.
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