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ABSTRACT

In order to help automotive interior and exterior decoration and human-computer
interaction interface designers effectively avoid the risk of poor interface usability and
further enhance the user experience, we quantify the complexity of human-computer
interaction behaviors in smart cars, and explore the specific task indicators and weight
distributions affecting the complexity of human-computer interaction inside the smart
cockpit, as well as propose a methodology for measuring the complexity of human-
computer interaction tasks in smart cars. First, by using the questionnaire survey
method, an index system composed of eight evaluation indicators: we established
the complexity of the logical structure, the complexity of the interface design ele-
ments, the complexity of the information channel transmission method, the number
of actions, the complexity of the management interface information, the complexity
of human-computer interaction input,the level of knowledge and cognition required
for human-computer interaction, and the complexity of the layout of the digital inter-
face for human-computer interaction.Secondly, we use the weight calculation method
that combines Fuzzy Analytic Hierarchy Process (FAHP) and Entropy Weight Method
(EWM) to determine the factors that have the most influence on the complexity of
human-computer interaction behaviors of the smart cockpit. Finally, the highly com-
plex human-computer interaction behavior is calculated and suggestions for design
optimization are given. The evaluation results show that the complexity of the human-
machine interaction digital interface layout in the cockpit (X8), the complexity of the
logical structure (X1), the level of knowledge and amount of cognition (X7) required
for human-computer interaction have a greater impact on the complexity of human-
computer interaction tasks in the car. Meanwhile, navigation operation, video and
audio playback and music selection switching are human-computer interaction tasks
with higher complexity and also need to be explored by designers focusing on them.
The method can help designers avoid the risk of excessive design complexity and
high user learning costs, and can assist designers to intervene in advance of design
problems related to the above indicators.
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INTRODUCTION

With the development of a new generation of information technology such
as 5G and Al, the traditional automotive industry is developing in the
direction of intelligence on the basis of the deep integration of informa-
tionization and industrialization, and the modern automobile has devel-
oped into a comprehensive mobile space covering the personal, public, and
social spheres (Zhu et al., 2023). This trend is not only a natural prod-
uct, but also an inevitable result of the rapid development of artificial
intelligence, Internet technology, communication technology in the environ-
ment, and bringing unprecedented changes to the traditional automotive
industry (Xu et al., 2023). With the help of the latest information tech-
nology, smart technology is developing rapidly, and simple, ordinary cars
are being transformed into smart cars (Kim, 2014). Traditional mechanized
construction is being replaced by smarter solutions, vehicles are becom-
ing smarter, and Intelligent technologies are widely used in the design and
manufacture of automobiles. This change is not just about revolutionizing
the technology, but also disrupting the entire industry model and service
experience. In this evolution, the car is no longer simply a means of trans-
portation, but an integrated mobility space that incorporates advanced
technologies to provide new experiences in the personal, public and social
spheres.

In this context, the relationship between intelligent systems and people,
and people and information in smart car cockpits has become increasingly
complex, leading to a diversified trend in human-computer interaction behav-
iors in the car, which directly affects the user experience in the vehicle. As
a result, in terms of improving driving safety, reasonable human-computer
interaction technology can help drivers better communicate with the vehi-
cle, provide important information and receive instructions from the driver,
thus reducing the risk of accidents. At the same time, in terms of improv-
ing driving comfort, human-computer interaction tasks can enhance driver
and passenger comfort and make driving more enjoyable. This includes more
intuitive control interfaces, automated driving functions and personalized
cockpit settings to meet the needs of different drivers. Therefore, in the
process of intelligent cockpit research, the complexity of human-computer
interaction tasks is an important indicator for evaluating the in-vehicle inter-
action experience and cockpit layout design, and this complexity directly
affects the driver’s cognitive load when accomplishing a specific task, which
in turn has a direct impact on the safety and efficiency of the intelligent vehi-
cle driving process. In view of this, in-depth research on the complexity of
human-computer interaction tasks and its rational application are the key
factors to improve the user experience of intelligent vehicle driving. In this
study, we will investigate the users’ real feelings about the indicators through
scale assessment, obtain the subjective and objective weight values of the
indicators, and calculate the integrated values of the two weights through
the subjective and objective weight combination method. Meanwhile, on this
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basis, the complexity of the 7 human-computer interaction behaviors will
be calculated and the human-computer interaction behavior with the highest
complexity will be identified. Therefore, this study aims to provide a research
basis for the design improvement and optimization of the HMI interface of
the future smart cockpit, which can make the enterprises and designers more
targeted in the development process of the smart cockpit.

REVIEW

The emergence of smart cockpit improves the level of automobile user expe-
rience, breakthrough interaction mode change makes the car become a key
node of the Internet of everything, giving rise to a new concept of automo-
bile service and the corresponding industry ecology, and it is an important
carrier for the construction of the future smart city. The development his-
tory of intelligent cockpit can be divided into three stages: electronic cockpit,
intelligent assistant and mobile space (Shreyas et al., 2020). The current intel-
ligent cockpit is still only at the primary level of intelligent assistant, and the
functions of the future intelligent cockpit will be more diversified, further
replacing the traditional physical buttons through the use of large screens,
multi-screen displays and voice recognition systems.

The core medium of human-computer interaction in automotive intelli-
gent cockpit is the human-computer interface, which is usually divided into
physical interface (i.e., buttons, knobs, paddles, etc.), touch screen interface
(i.e., the user can issue commands to the vehicle through the action of point-
ing, pulling and dragging on the screen), voice interface (i.e., recognizing
and responding to the human’s voice commands), and action interface (i.e.,
recognizing and responding to the human’s action commands), and so on.
The interactive interfaces and cockpit arrangements of the center control and
instrumentation of different smart cockpits are different, which leads to a
large difference in the complexity of human-computer interaction between
humans and different components of the vehicle in the smart cockpit, and
therefore affects the safety and efficiency of the driving process of smart vehi-
cles. In fact, multi-screen information displays increase the cognitive load of
drivers. Grahn and Kujala (2020) pointed out that the user interface design
has a relatively large impact on the visual demand and visual interference
potential compared to the screen size. Different types of interaction modes
can be used to reduce the impact of distracted driving in tasks of varying
complexity and difficulty (Ma et al., 2022; Graichen et al., 2022).

Foreign scholars have studied the contextual cognition and attentional
mechanism of in-vehicle driving through experiments, and categorized high-
frequency in-vehicle scenarios such as navigation, communication, entertain-
ment, in-vehicle APP, and temperature adjustment (Bach et al., 2009). Based
on the previous research, this study selects 7 main human-computer interac-
tion tasks in the cockpit (answering and calling cell phones, music selection
and switching, in-vehicle APP interaction, navigation operation, video and
audio playback, voice wake-up and center control screen interaction), and
performs the complex quantification and analysis of 8 latitudes, and the
indexes’ contents and meanings are as follows:
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Table 1. Complexity metric content and meaning.

No. Serial Elements Source
num-
ber

Complexity of the X1 The complexity of the (Jianan and Abas, 2020)
logical structure logical structure of the task

will directly affect the

driver’s cognitive

performance and the

smoothness of cockpit user

experience
Complexity of X2 In the HMI interface (Ebel et al., 2023)
interface design design, various graphics,
elements text and interactive

elements used are intuitive

and user-friendly in order

to give the user a level of

complexity conveyed

during the interaction.
Complexity of X3 The ease of information (Detjen et al., 2020; Detjen et al., 2019)
information channel exchange between the
delivery methods driver and the vehicle

system.
Number of actions X4 The number of actions (Spyridakos et al., 2020)

required for a single

human-computer

interaction task in a smart

cockpit.
Complexity of XS5 Complexity of management  (Zhao et al., 2023)
management interfaces information in
interface smart cockpit HMI
information
Complexity of X6 Complexity of (Ma et al., 2023)
human-computer human-computer
interactio inputs interaction inputs for smart

cockpits
The level of X7 The level of knowledge and ~ (Faas et al., 2020; Rittger et al., 2022)
knowledge required amount of cognition
for human-computer required for
interaction and human-computer
cognitive capacity interaction in smart

cockpits
Complexity of X8 Complexity of digital (Ma et al., 2023; Li et al., 2017)

human-computer
interaction digital
interface layout

interface layouts for
human-computer
interaction in smart
cockpits

METHOD

Using the Entropy Method to Recognize the Complexity of

Human-Computer Interaction Tasks

In 1948, Shannon (Shi et al., 2020) first introduced the concept of entropy
into information theory. The entropy method is a way for mainly measuring
the degree of system disorder. The lower the entropy, the greater the amount
of effective information, and the greater the entropy, the smaller the amount
of effective information. The entropy method can visualize the degree of data
disorder or uncertainty, so as to making the algorithm easy to understand and

interpret.

As an objective empowerment method, the entropy method can determine
the weight of the indicators according to the relative change degree of each
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complexity indicator on the impact of the system as a whole, and the indi-
cators with a large degree of relative change have a larger weight, which
can be determined according to the effective information of each indica-
tor, and the larger the effective information is, the larger the weight will be.
This study proposes an entropy-based method to quantify the complexity of
human-computer interaction tasks in intelligent cockpits, and to introduce
the entropy method into the analysis of human-computer interaction task
complexity in intelligent cockpits, so as to obtain the result of the objective
importance degree.

Using the FAHP to Analyze the Complexity of Human-Computer
Interaction Tasks

The analytic hierarchy process (AHP) (Saaty, 1980) is a multi-criteria context-
based decision-making methodology that is widely used as a decision-making
tool in various fields. The AHP most notably provides an effective mech-
anism to check the consistency of the assessment measures and enables
decision makers to incorporate subjectivity, experience, and knowledge into
the decision-making process in an intuitive and natural way. The AHP
could first identify the main factors that influence decision making and then
arranges these factors into different levels to reduce the complexity of the
decision-making problem (Saaty, 1977; Saaty, 1986).

In fact, the traditional AHP cannot accurately capture the fuzzy and uncer-
tain perceptual demands of users, its assessment scale cannot fully cover the
subjectivity of human cognition of things. For this reason, to combine fuzzy
mathematics with AHP can effectively solve the problem of user cognitive
complexity, so as to the fuzzy analytic hierarchy process (FAHP) (van and
Pedrycz, 1983) was proposed to make the decision-making results will be
more accurate (Kubler et al., 2016). Thus, the FAHP is very suitable for
the user to express subjective preference related to affective responses (Shieh
et al., 2017). In recent years, the FAHP has been widely used by scholars in
product and decision making research (Batwara et al., 2022; Zhu et al., 2022;
Chai and Wang, 2022), and its specific study process can be found in the
literature (Wang and Zhou, 2020). This study focuses on calculating the sub-
jective weight values of human-computer interaction complexity indicators
based on the FAHP.

Combining Weights

In this study, the complexity weights are calculated based on the FAHP
method and entropy method, where FAHP is the result of subjective weight
calculation and entropy is the result of objective weight assignment, so as
to arrive at the result of the objective importance degree, and the weight
calculation formula for the combination of the two is shown below:

Wanp WEntropy
7
Zi =1 Wanp WEntropy

Since the formula considers both subjective and objective weight combi-
nation algorithms, it is highly adaptable in the process of determining the
weights, which can further lead to the value of the integrated weights of the
factors in the target program layer.

W, =

(1)
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Questionnaire Design

In this study, based on the specifics of the research problem, a panel of 30
experts (associate professors in automotive human-computer interaction and
design and UX practitioners with more than § years of experience in the field)
and 20 real users of smart cars were selected, and then 8 complexity metrics
under the 7 main interaction tasks of the smart car cockpit were scored in the
form of a Likert scale. Specifically, the 7 levels of the 8 complexity indicators
corresponded to the complexity scales 1, 2, 3,4, 5, 6, and 7, respectively, and
50 panelists scored the 8 complexity indicators under the 7 main interaction
tasks, and the questionnaire survey was conducted through the Questionnaire
Star online platform.

RESULTS
Reliability Analysis

Reliability validity is used to measure the accuracy and stability of the results
of a questionnaire. Reliability is used to measure whether the results of a
questionnaire are reliable or not, and is generally verified by Cronbach’s a.
When the value of Cronbach’s a is greater than or equal to 0.7 it means
that the data has high reliability (Wang et al., 2023; Wang et al., 2023).
The questionnaire data were imported into the SPSS statistical software for
the reliability test, and the results of the software showed that the value of
Cronbach’s « is 0.843, which was higher than 0.8, indicating that the data
of the study has a high level of credibility.

Descriptive Statistics

We surveyed respondents about their commuting patterns based on their age
and driving experience. In terms of commuting, the majority of participants
(80%) reported driving more than 40 minutes per day in a single trip. Addi-
tionally, 71% of those who chose to travel by cab or online car reported
commuting more than 40 minutes per day. Our research results show that
those who primarily drive to and from work spend more time in the car each
day.

The Entropy-FAHP Method Was Applied to Calculate the Weights

The basic idea of FAHP is to first establish a hierarchical describing sys-
tem functions or characteristics according to the evaluation requirements,
and then make a secondary comparison of the relative importance of the
design elements and give the corresponding scale to form a judgment matrix
between an upper-level factor and a lower-level related factor, in order to give
a sequence of the relative importance of the related factors.

The entropy weighting method determines the weight of indicators based
on the size of each indicator’s information load. According to information
theory, in order to examine the role of each factors in the indicator system, it
is necessary to study the variability of the indicators. The greater the variabil-
ity of the indicator, the higher the information content of the indicator and
the greater the “differentiating power” of the indicator. This means that the
weight of each indicator should be determined by the change in the values of
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the attributes of the options under that indicator; the greater the change, the
greater the weight of the indicator; conversely, the smaller the weight.

Apply Entropy Weight Method to Determine Indicator Weights

The EWM is applied to determine the objective weight of indicators. First, the
evaluation data of experts are collected, and then the initial weight matrix is
obtained based on the EWM. Finally, the importance of the eight complexity
indicators is obtained. The results are shown in Table 2.

Table 2. Weight scores of 8 complexity indicators based on EWM.
X1 X2 X3 X4 X5 X6 X7 X8
0.120 0.112 0.110 0.131 0.143 0.113 0.106 0.165

Determining the Weight of Indicators Through FAHP

The fuzzy analytic hierarchy process is used to determine the subjective
weight of the indicator. By constructing a judgment matrix, and then using
the 9-scale method to conduct pairwise comparisons, the calculation of the
subjective weight is completed. On this basis, it is necessary to pass the con-
sistency test. If the value of Cl is less than 0.1, the judgment matrix passes the
consistency test. Otherwise, the judgment matrix needs further adjustment.
Finally, the results of this study are shown in Table 3.

Table 3. Weight calculation of 8 complexity indicators based on FAHP.

Project description Item number Weighting Values CI value
The complexity of the logical structure X1 0.1845 0.08
The complexity of interface design X2 0.0749 0.07
elements

The complexity of the information X3 0.0612 0.01
channel transmission method

Number of actions X4 0.0931 0.06
The complexity of management X5 0.0771 0.06
interface information

The complexity of human-computer X6 0.0621 0.04
interaction input

The level of knowledge and amount of X7 0.1247 0.03

cognition required for

human-computer interaction

The complexity of human-computer X8 0.1951 0.01
interaction digital interface layout

Subjective and Objective Methods Combined to Improve Weights
The weight is calculated through the EWM and the FAHP method. The
result obtained by the entropy method is the objective weight, and the result
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obtained by the FAHP method is the subjective weight. The combined cal-
culation of the weight is completed through formula (1), and the results
are shown in Table 4. According to the calculation results, the weights and
ranking results of the eight complexity indicators are shown in Table 5.

Table 4. Numerical calculation of weights combining subjective and objective

methods.
Project description Item Entropy = FAHP Combined
number Weights ~ Weighting Weighting
method value
The complexity of the logical X1 0.120 0.1845 0.196
structure
The complexity of interface X2 0.112 0.0749 0.074
design elements
The complexity of the X3 0.110 0.0612 0.060
information channel
transmission method
Number of actions X4 0.131 0.0931 0.108
The complexity of X5 0.143 0.0771 0.098
management interface
information
The complexity of X6 0.113 0.0621 0.062
human-computer interaction
input
The level of knowledge and X7 0.106 0.1247 0.117
amount of cognition required
for human-computer
interaction
The complexity of X8 0.165 0.1951 0.285
human-computer interaction
digital interface layout
Table 5. Indicator weight sorting.
Index X1 X2 X3 X4 X5 X6 X7 X8
Weight 0.196 0.074 0.06 0.108 0.098 0.062 0.117 0.285
Rank 2 6 8 4 S 7 3 1

Interaction Complexity Analysis

Perform weighted calculations on the weight results and user evaluation
results to explore the 7 main human-computer interaction tasks in the smart
cockpit. For example, the complexity of making and receiving calls on a
mobile phone S1, the complexity of music selection and switching S2, the
complexity of vehicle APP interaction S3, the complexity of navigation oper-
ation S4, the complexity of video and audio playback S5, the complexity of
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voice wake-up S6 and the complexity of central control screen interaction
S7, the comprehensive complexity values of different indicators of the seven
human-computer interaction tasks were further calculated, and the results are
shown in Table 6. It can be seen from Table 6 that the most complex human-
computer interaction behaviors in the smart cockpit are further proposed to
further improve strategies.

Table 6. Human-computer interaction behavior complexity entropy value.

Index S1 S2 S3 S4 S5 S6 S7

X1 2.833 3.699 2.833 4.500 3976 2.167 3.333
X2 3.167 3.887 3.500 3.667 3.500 1.833 3.500
X3 3.773 3.333 3.500 4.211 3.333 2.121 3.667
X4 3.167 3.121 3.167 4.598 3.500 2.167 3.833
X5 3.967 3.367 3.500 3.833 3.167 2.667 3.500
X6 3.532 3.667 3.862 3.431 3.333 2477 3.833
X7 3.391 3.573 4.833 3.833 3.763 1.500 3.833
X8 3.667 3.882 3.540 4.970 3.775 1.833 3.333

Overall complexity  3.407 3.632 3.523 4.356 3.650 2.034 3.525

DISCUSSION

This study first discussed the importance of 8 complexity indicators, calcu-
lated them using a combination of subjective and objective methods, and
obtained the complexity factors of human-computer interaction behavior in
smart cockpits. Among them, the complexity of human-computer interaction
digital interface layout (X8), the complexity of the logical structure (X1),
the level of knowledge and the amount of cognition required for human-
computer interaction (X7) rank in the top three in importance respectively.
On this basis, with reference to the weight values of 8 indicators, calculate
the complexity of 7 driving interaction behaviors and obtain the relative com-
plexity of different human-computer interaction tasks.The results show that
the most complex human-computer interaction behavior is navigation oper-
ation, with a score of 4.356, followed by video and audio playback, with a
complexity of 3.650, and music selection and switching, with a complexity
of 3.632.

The complexity of the human-computer interaction task of making and
receiving calls on a mobile phone is moderate at 3.407, mainly because this
interaction involves multiple aspects, including Bluetooth connection, incom-
ing call management, call control, etc. Complexity may come from factors
such as handling multiple phone models and Bluetooth protocols, as well
as communication stability when the vehicle is in motion. At the same time,
there are fewer misoperations, but during the process of making and receiving
calls, the user still needs to look at the phone interface in the central control
screen to complete the task of answering and making calls.

The human-computer interaction task complexity of music selection and
switching is relatively high, at 3.632. The complexity of this behavior may be
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affected by factors such as the diversity of audio formats, the size of the song
library, and the processing of users’ personalized music preferences. At the
same time, a good user experience also requires intelligent design of behav-
ioral operations such as switching songs and adjusting volume. When users
cannot effectively obtain their favorite music through multiple operations,
the perceived human-computer interaction complexity value will be high. In
addition, the interface design of the vehicle system is critical. The navigation,
content layout and window switching of the music interface are all key factors
in the human-computer interaction task of music selection and switching.

The complexity of the vehicle APP interaction task is relatively high, which
is 3.523. The complexity of vehicle APP interaction may be due to the increase
in application types, for example, navigation, entertainment and informa-
tion tasks have high complexity, switching between different applications,
data transmission, and user configuration may lead to increased system com-
plexity. In addition, experts and users generally believe that the information
provided by vehicle APPs needs to be different from the content presented on
mobile phones, tablets, computers, etc., and the presentation methods should
also be different.

The navigation operation interaction task has the highest complexity,
which is 4.356. On the one hand, the navigation operation process requires
the user to complete information input through multi-modal interaction and
through the input field in the central control screen, and finally complete the
navigation operation task. Sometimes during the interaction process, due to
the uncertainty of the destination, the user needs to further confirm the infor-
mation, which results in a higher number of required actions and makes the
human-computer interaction task itself more complex. On the other hand,
due to the update of real-time traffic information, path planning and other
aspects, the highly intelligent navigation system also requires users to con-
stantly adjust according to the actual situation, and inevitably produces a
certain degree of behavioral complexity.

The complexity of the interactive task of video and audio playback is
3.650. This is mainly because the user requires a large number of actions
during the selection and switching process, and constantly adjusts his or
her choices during the execution process, resulting in a certain degree of
behavioral complexity. Contemporary, due to users’ personalized needs for
subtitles, image quality, etc., this indirectly increases the complexity of the
system.

The complexity of the interactive task of voice arousal is 2.034, which is
a lower score compared to other interactive behaviors. The reason is that as
the development of intelligent technology becomes increasingly mature, the
design of the voice interaction system is relatively stable, and many instruc-
tions can be easily implemented through human-computer dialogue, thus
improving the convenience of the user. However, in addition to the semantic
logic of voice interaction, there are certain problems in the recognition of
the environment inside and outside the car and the recognition of interac-
tive objects, which can easily lead to misoperation problems in random voice
interaction.
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The complexity of the interactive task of central control screen is 3.525,
which is more complex than other interactive behaviors. Since the user fully
considers the operating logic factors of the central control screen and the
usability factors of interactive behavior during the operation process, the
behavior will inevitably have a certain complexity. To improve user expe-
rience, four strategies can be adopted: (1) Simplify the interface design, place
the most commonly used functions and control options in places that are
easy to access and understand, adopt a flat design, and avoid too many
icons and buttons to reduce user learning costs. (2) Use contextual navi-
gation to provide relevant options based on the user’s current context to
avoid frequent switching between different tasks. (3) Intelligent algorithms
predict user operations, use intelligent algorithms to predict the user’s pos-
sible next operations, and provide relevant shortcuts to improve operating
efficiency. (4) Provide intuitive feedback, through visual feedback methods
such as animation, lighting and color changes, to enhance the user’s percep-
tion of interaction and let the user clearly know the effect of their operation.
By comprehensively applying these strategies, the complexity of interactive
tasks on the smart cockpit central control screen can be effectively reduced
and the user experience improved.

CONCLUSION

This paper conducts research on the user experience complexity of human-
computer interaction tasks in smart cockpits, and evaluates the main human-
computer interaction behaviors. The purpose of this study is to use the
analytic hierarchy process and the entropy value method to comprehen-
sively evaluate the influencing factors of user experience complexity.The
results show that: (1) The complexity of the human-computer interaction
digital interface layout (X8), the complexity of the logical structure (X1),
and the knowledge level and cognitive amount required for human-computer
interaction (X7) are important evaluation indicators that significantly affect
the complexity of operating behaviors. (2) From the perspective of human-
computer interaction behavior, the most complex human-computer interac-
tion behavior is navigation operation, followed by video and audio playback,
and finally music selection and switching. In the future design improvement
process, it should be considered that the operation logic in the naviga-
tion operation interface design should be simplified and the interface layout
should be more reasonable.By accurately capturing users’ needs for naviga-
tion operations, video and audio playback, and music selection switching, a
friendly and simple smart cockpit user interface is designed.
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