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ABSTRACT

Humans categorize vocal displays of highly intensive affective states with very low
precision. However, there are many applications necessitating correct perceptions of
alarm calls. We decided to classify two negative (pain and fear), two positive (laugh
and pleasure) affective states and compared these to neutral state. We used a unique
dataset where all displays had been vocalized by all expressers. We used an ANN that
is designed for a different, yet comparable task; one that classifies human and animal
sounds as well as mundane events (such as pouring water from a jug). The outputs
were then statistically analyzed using Bayesian methods. Our analysis showed that
the outputs can successfully classify neutral and non-neutral affective states but they
were unable to distinguish the intensive affective states from each other (with one
exception: the case of laugh). Given the insights we acquired, we infer that classifying
intense affective states will remain an insurmountable barrier for any future ANN.
The applicability of our result also shows that the cost, time, and effort overhead of
attempting to designing a dedicated ANN will be prohibitive.

Keywords: Affect vocalization, Artificial neural networks, Affect valence identification,
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INTRODUCTION

The Current State of Knowledge

Classifying vocalizations of pain and other intense affective states is a
highly complex, non-trivial task. While significant progress has been made
in developing automated pain detection systems that are based on facial
expressions (ANNs: Prossinger et al., 2022; Swin Transformer: Yuan et al.,
2022), and on multimodal signals using feed-forward neural networks
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(Gkikas et al., 2024), there remains a need for more accurate and reliable
methods for identification and classification of vocal cues in isolation.

We extend our previously published approaches that dealt with facial
expressions of affects (Binter et al., 2023) by proposing a novel approach
that leverages pre-trained artificial neural networks (ANNs), combined with
Bayesian statistics, to enable valid identification in the challenging domain of
vocal cues.

Hearing signals contributes to keeping us safe in natural environments by
detecting threats. In contrast to vilight (with its extremely short wavelength),
sound can diffract considerably. We are thus more safe from threats even
in the cases when we are unable to source these. Also, because sound does
not attenuate appreciably in our close environs, the evolution of correctly
perceiving signals (not only warning ones) is, arguably, a survival advantage.
However, in modern settings (such as cities) meaningful signals might be
missed due to cross-talk, bystander effects, as well as information overload
(oftentimes characterized as sound pollution). This is where novel, intelligent
algorithms can play a role in identifying or interpreting acoustic signals,
thereby improving communication and, more importantly, ensuring safety.

The Intensity Paradox and Decision Making

There are problems that machine-learning-based algorithms that classify
acoustic signals must deal with. These arise when models are trained on
sources containing human errors. These errors can bias decision-making,
introduce inconsistencies in labeling, or simply generate misunderstandings.
These can then lead to models that inherit and amplify these mistakes, thereby
potentially perpetuating biases and generating inaccurate outputs (more on
this problem in the Stimuli Preparation section).

Sound data is plentiful (and readily available); such data can be used to
train a feed-forward neural network for a plethora of general acoustic cues.
Training is, however, very expensive and only companies with considerable
resources can afford to produce such networks ab initio. Fine-tuning already
existing networks is an option — but benefits are not guaranteed. Specifically,
training dedicated neural networks that can classify vocalizations of affect
cues (such as the vocal expression of pain that we are investigating) threaten
to be prohibitively expensive.

The Cost-and-Benefit Analysis — A Novel Approach

Rather than develop and train (or fine-tune) a neural network that focusses
on each affective state vocalization separately, we use the outputs that have
been generated by an already available ANN from Wolfram Technologies
(details below) that had been trained on acoustic data to accomplish a more
general task: identify types of commonplace acoustic signals.

The novel, unconventional idea is that an existing model that classifies
sounds and vocalizations will produce a discrete probability distribution
of classifications (Fig. 1) for each of the human affective vocalizations
we are studying. If these probabilities are numerically close within each
vocalization group but with a likelihood distribution distinct enough from
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other groups, then these probability spectra (so defined) can be used for our
investigations — obviating the (expensive) necessity of training a dedicated
neural network from scratch.

MATERIALS AND METHODS

Stimuli Preparation

Current pre-testing practices (selecting stimuli with high inter-participant
agreement) create “stimulus homogenization bias” (Van Der Zant & Nelson,
2021; Binter et al., 2023), thereby severely limiting investigations of
natural variations in human behavior. While genuinely natural stimuli
offer indisputable ecological validity, their inherent variability introduces
considerable statistical noisiness in the data (no pun intended) and other
extenuating acoustic peripherals (primarily acoustic cross-talk). Semi-
naturalistic stimuli provide a valuable middle ground, allowing the
manipulation of specific elements within a controlled setting for more
nuanced and more reliable investigations.

Figure 1: The auditory spectrum of the affects expressed by the five males and
the five females. Only probabilities of identification above 50% are included in this
investigation; they are color-coded. (The side bar shows the scale of the color-
coding.) Absences of identifications are rendered as black squares. All males and all
females have “speech” as the most probable identification. We observe that there are
more classes of identifications above 50% for females (namely, 20) than for males
(namely, 15). For the females, we also note there are identifications for “Neutral” that
are completely absent for “Pain” and for “Pleasure”.
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We used the same stimuli as described in Binter et al. (2023) and Boschetti
et al., (2023). From the numerous audio-visual materials viewed, ten audio
records (five with female vocalizations and five with male vocalizations) were
chosen. Based on the developments of the plots in each of these audio-visual
materials, five vocalizations were selected (one of “Pain”, one of “Pleasure”,
one of “Fear”, one with “Laugh”, and one for “Neutral”). Relying on the
contextual information, experienced researchers agreed on the stimuli that
were chosen and what expression was to be expected (both visually and
acoustically during viewing).

Vocalization Identification Spectrum

Each of the 25 vocalizations were of 1–2 seconds duration and were stored as
*.wav files. We used a pre-trained neural network (“Wolfram AudioIdentify
V1 Trained on AudioSet Data”, 2019) from Wolfram Technologies that had
been trained on 2 084 320 human-labeled 10-second sound clips drawn from
YouTube videos. This neural network (with 4 664 911 parameters and 156
layers of seven types) identifies the possible type of acoustic signal together
with the probability of each identification.

Figure 2: The contour plots of the pdf (probability density function) of the vocalizations
of the affects “Pain” and “Pleasure” by the males (left) and by the females (right).
The coordinates of the vocalizations were obtained by SVD of the acoustic spectrum
(Fig. 1) and each pdf was obtained with a KDE (kernel density estimation) and an
Epanechnikov kernel. In the graphs, each point is the vocalization of an affect and
the contour plots show the likelihood functions of the KDEs. The rendered arrows
serve to enhance visualization; they have no statistical interpretation (in this paper).
The numerical values of the components have no direct interpretability. The degree of
overlap between two likelihood functions is expressed by confusion matrices (Table 1),
one for each biological sex and a pair of vocalizations. In these two graphs, the

confusion matrix for the males is
(

54.6 45.4
12.1 87.9

)
%, and it is

(
57.4 42.6
24.1 75.9

)
% for the

females. In the cases shown here, there are no significant differences between the
pairings of the vocalizations, neither for the males, nor for the females.
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Dimension Reduction and Likelihood Function Estimations

We therefore obtained, for each vocalization, a spectrum of probable
identifications (Fig. 1); these probabilities were then entered in two matrices:
a 15 × 25 one for the males and a 20 × 25 one for the females. We then
used SVD (Singular Value Decomposition) to dimension-reduce the entries.
For each affect, we obtain two sets of five 2D vectors (one for each male and,
separately, one for each female). We then estimated the 2D distributions of
the 5 points per sex for each affect using a KDE (kernel density estimation)
with an Epanechnikov kernel and the Silverman rule for optimizing the kernel
window. In total, we statistically analyzed five KDEmale and five KDEfemale
for the five vocalizations per sex.

Figure 3: The contour plots of the pdf (probability density function) of the vocalizations
of the affects “Pleasure” and “Laugh” by the males (left) and the affects “Pain” and
“Neutral” by the females (right). The coordinates of the vocalizations were obtained by
SVD of the acoustic spectrum (explained in the text) and each pdf was obtained with a
KDE (kernel density estimation) and an Epanechnikov kernel. In the graphs, each point
is the vocalization of an affect and the contour plots show the likelihood functions of
the KDEs. The rendered arrows serve to enhance visualization; they have no statistical
interpretation (in this paper). The numerical values of the components have no direct
interpretability. The degree of overlap between two likelihood functions is expressed
by confusion matrices (Table 1), one for each biological sex and a pair of vocalizations.

In these two graphs, the confusion matrix for the males is
(

98.3 1.7
2.6 97.4

)
%, and it is(

92.3 7.7
2.0 98.0

)
% for the females. In the cases shown here, there are highly significant

differences between the pairings of the vocalizations, both for the males and for the
females.

Confusion Matrices for Significance Testing

We use the following implementation of a Monte Carlo method to test
for a significant difference between KDEA and KDEB. For each of two
likelihood functions (LA(s) = pdf (KDEA, s) and LB(s) = pdf (KDEB, s)),
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we use a pseudo-random number generator RNG to generate two sets
of ran random numbers (in this manuscript, ran = 25000). One set
ranA =

{
RNG

(
KDEA, rank

)∣∣k = 1 . . . ran
}

uses the KDEA distribution,
the other set ranB =

{
RNG

(
KDEB, rank

)∣∣k = 1 . . . ran
}

uses the KDEB
distribution. We obtain four sets of likelihoods: LAA = pdf (KDEA, ranA),
LAB = pdf (KDEB, ranA), LBA = pdf (KDEA, ranB),
and LBB = pdf (KDEB, ranB). We calculate the confusion matrix MC:

MC =
1

ran

(
nA|LAA>LAB nA|LAA<LAB

nB|LBB<LBA nB|LBB>LBA

)
where the notation nA|LAA>LAB means: “the number of likelihoods when
the likelihood of KDEA of a subset of ranA is greater than the likelihood
of KDEB” — likewise the permutations for all other indices. If the off-
diagonal elements ofMC are both less than 10% (Caelen, 2017), then the two
distributions KDEA and KDEB are significantly different at 5% significance
level.

Table 1. The table of confusion matrices, as described in the text. If we assume a
significance level of 10% (Caelen, 2017) for the off-diagonal elements (this
significance level corresponds to 5% in conventional, frequentist significance
level assessments), then five pairings are significantly different for the
males (Pain↔Laugh, Pain↔Neutral, Pleasure↔Laugh, Pleasure↔Neutral, and
Fear↔Neutral) and three pairings are significantly different for the females
(Pain↔Neutral, Pleasure↔Neutral, and Fear↔Neutral). These significantly
different pairings are highlighted in pastel orange. However, a close inspection
shows that two further pairings for the females (Pleasure↔Laugh and
Fear↔Laugh) are close to significantly different. The rows of all confusion
matrices add up to 100%; if the displayed values do not, then the reason is
due to rounding of the computed entries.

Females

Pleasure Fear Laugh Neutral

Pain
(

57.4 42.6
24.1 75.9

) (
62.1 37.9
23.9 76.1

) (
87.3 12.7
14.2 85.8

) (
92.3 7.7
2.0 98.0

)
Pleasure

(
68.2 31.8
33.7 66.3

) (
92.9 7.1
12.9 87.1

) (
98.3 1.7
1.14 98.9

)
Fear

(
92.1 7.9
13.9 86.1

) (
96.9 3.1
1.2 98.8

)
Laugh

(
67.1 32.9
9.6 90.4

)
Males

Pain
(

54.6 45.4
12.1 87.9

) (
58.1 42.0
36.0 64.0

) (
91.9 8.1
3.9 96.1

) (
100.0 0.0
0.0 100.0

)
Pleasure

(
85.6 14.4
46.8 53.2

) (
98.3 1.7
2.6 97.4

) (
100.0 0.0
0.0 100.0

)
Fear

(
81.1 18.9
11.4 88.6

) (
92.6 7.4
0.0 100.0

)
Laugh

(
20.0 80.0
0.2 99.8

)
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RESULTS

Comparison With the Neutral State

All affect vocalizations of both males and females are remarkably different
from the neutral vocalization (Table 1) with only one exception (“Laugh”
versus “Neutral” for the males).

Comparisons of the Negative Affective States

The results of comparisons of the vocalizations of the affective states suggest
that they are not significantly distinguishable (Fig. 2).

Comparison of the Negative Affective States With the Positive
Affective States

Only one positive affective state vocalized — the sound of laughter — is
significantly different from the negative affective state “Pain” for males, and
almost significantly different for females. The vocalization of the positive
state “Pleasure” is significantly different from “Laugh” for males, and, again,
almost significantly different for females. We address these issues in the
Discussion and Conclusion section.

DISCUSSION AND CONCLUSION

Wolfram AudioIdentify Neural Net outputs probabilities for 632 classes.
Since all vocalizations of affective states, together with “Neutral” total to
21 different identifications, we can consider this test of output quality is
remarkably reliable (Bayesian test of categorical variables; Beta distribution
Be(22, 612), p < 2.1× 10−151; not shown).

This study is not only a “Proof of Concept”; we also present surprising
findings.

We discover that, while humans are incapable of distinguishing
vocalizations of affective states (Holz et al., 2021; Binter et al., 2023), we
find that trained neural networks are not superior at distinguishing some of
these vocalizations. Detractors from the reliance on neural networks would
perhaps argue that the neural network is not specifically designed to deal
with affective state vocalization classifications. We disagree; we challenge
that view by observing that the probabilities of acoustic identifications are
reliable (Fig. 1). Rather, as can be observed from the confusion matrices in
Table 1 and the contour maps in Fig. 2 and Fig. 3, the small sample size is
the shortcoming. We discover that some vocalizations are too varied. None
the less, we find the contour plots are reliably interpretable; because they
are highly varied; our claim that the small number of data-points is the
shortcoming is supported. We conclude that the likelihood of a dedicated,
ab novo designed neural network will have a superior performance is highly
unlikely.

Even though the negative affective states are acoustically not
distinguishable from one another, there is a clear distinction between
any highly activated affective state and the neutral state. More importantly,
there is a distinction between affective vocal displays of activities that are
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considered illegal in the public arena versus those whose presentation are
considered acceptable (“Neutral” and “Laughter”). Because the highly
activated affective states (“Pain”, “Fear”, and “Pleasure”) are not acceptable
in the public arena, our findings have an application. Consider a distress
call in a public place; the neural network we have used can be used to
automatically alert authorities and/or medical help personnel — despite the
neural network’s inability (as well as the human’s hearing the same distress
call) to distinguish pain from fear, say. We have shown that the significance
levels in the confusion matrices are adequate for such applications (because
they can distinguish between highly affective states and “Laugh” and
“Neutral”) — despite the small sample sizes.

Furthermore, the outcomes of our analyses of the vocalization features
provide insights that are valuable for ethologists and psychotherapists (when
explaining why, for instance, false identifications are so prevalent). Our
approach is novel, scalable and can be easily adapted to other comparable
vocalization detection challenges and datasets. The costs are minimal in
comparison with conventionally recommended ways of dealing with such
situations — outlay for expensive hardware and then training a novel model
and then fine-tuning it.
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