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ABSTRACT

The integration and deployment of AI in the industry faces several challenges,
involving not only the need for robust and accurate AI models, but also their seamless
integration with existing systems, while ensuring an intuitive user experience for
workers. Furthermore, it is critical for AI solutions to be continuously managed for
data governance, performance optimization, and the mitigation of risks, among other
factors. This paper presents a service-oriented application that explores the integration
of Machine Learning algorithms by adopting Human-in-the-Loop (HITL) strategies
to enhance user-technology interactions in an Aluminium industrial environment.
The proposed application exploits the use of data-driven Autonomic Computing
techniques in AI Data Pipelines to promote the development of self-managed,
adaptive systems that support dynamic interactions between technology and workers.
Through the implementation of a web interface, workers are provided with seamless
access to real-time data analysis and intelligent solutions within the user-empowered
application.
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INTRODUCTION

In today’s rapidly evolving industrial landscape, the integration of Artificial
Intelligence (AI) in the industry represents a paradigm shift, offering
unprecedented opportunities to enhance efficiency, reduce environmental
impact, and streamline operations, what is essential to maintain EU
Industry competitiveness and sustainability (Mhlanga, 2022). Nevertheless,
the complexities of modern industrial processes necessitate robust, flexible
AI solutions that can be seamlessly integrated into existing infrastructures
without disrupting current production workflows, while responding to the
dynamics of the process, particularly under uncertain scenarios. To guarantee
the successful adoption of AI technologies in industrial settings, it is essential
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to keep the human in control and at the centre of all developments, actively
involving workers in the design, implementation, and refinement of the
technology. Indeed, AI systems have shown promising potential in supporting
workers in their daily operational activities, enhancing their skills and
knowledge of the process, and enabling faster-informed decisions (Rožanec
et al., 2023), but their engagement with the technology is key to fully exploit
the AI capabilities.

This paper presents a novel AI-driven application through the implementation
of an AI Data Pipeline with Autonomic Computing capabilities to
dynamically adapt to the needs of the industry, facilitating human-
machine interactions and technology management, shown in Figure 1.
The proposed user-centric application is integrated and evaluated in the
Aluminium sector to demonstrate its ability to create a smart, human-centric
production environment. By incorporating Human-In-The-Loop (HITL)
strategies in a user-friendly interface, the proposed application enables a
collaborative environment between humans and technology, ensuring that
AI implementations are both effective and ethically sound.

Figure 1: Diagram of the AI framework linking a data pipeline with an autonomic
manager (AM) for industrial efficiency. The AM, based on the MAPE-K1 model,
leverages metadata to enhance autonomy.

THE AI DATA PIPELINE

The integration of AI in industrial processes requires of methodical strategies
to manage the flow of data through various computational tasks. Some
of these tasks include the ingestion and transformation of data, as well as
real-time data analysis. AI Data Pipelines are essential to ensure that data
moves efficiently and reliably across different stages, transforming raw data
into actionable information. Furthermore, this type of infrastructure must
ensure the proper management and processing of datasets from different
sources to enable AI applications managing industry factors—both internal
and external—effectively (Krismentari et al., 2022). In this paper, we
present an innovative AI Data Pipeline consisting of five main components
that efficiently manages the end-to-end process of collecting, processing,
and analysing data to train and deploy AI models effectively in industrial

1MAPE-K: (Monitor-Analyze-Plan-Execute-Knowledge)
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scenarios. The pipeline has been designed and engineered with the aim of
improving operational agility and performance in the industry. The AI Data
Pipeline and the interrelations among components are depicted in Figure 2.
The five components of the pipeline are described in more detail in the
following subsections.

Figure 2: Workflow diagram illustrating the process from raw data to application,
detailing components of pipeline: ingestion, transformation, MongoDB exploration,
model training, and deployment.

Data Ingestion: The initial stage of the AI Data Pipeline involves collecting
data from various sources, such as sensors, external databases, and/or
third-party platforms and applications. At this stage, raw data is read and
structured as necessary to prepare it for subsequent processing, ensuring its
accessibility in a usable data format or schema. In industrial environments,
customized ingestion procedures that cover the full spectrum of data might
be required to handle the various data sources and formats.

Data Transformation: This component processes the ingested data,
applying transformations such as normalization, filtering, and feature
extraction to make the data suitable for data analysis. It is in this stage
where data is merged and prepared to be stored in a proper data storage
and management system e.g., MySQL, or MongoDB. Techniques to handle
missing or incomplete data are implemented by this component as well e.g.,
inference and statistical methods from historical data.

Data Exploration: Data visualization and analysis are vital to enhance
human knowledge of the process and its parameters, as well as elucidate
intrinsic data patterns and analyze its evolution over time. This component
can provide data insights in form of tables, charts, and/or pre-defined data
analysis techniques e.g., via descriptive statistics and statistical inference
methods.

Model Training: In this stage, ML models are trained, fine-tuned,
and evaluated using the processed datasets from the Data Ingestion &
Transformation components. Some of the functions comprised by the Model
Training component includes the selection of appropriate ML algorithms
according to the data nature and the problem addressed, the selection and
fine-tuning of hyperparameters and architecture of the ML models, and
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the evaluation of their performance to ensure that the specified criteria is
accurately met.

Real-World Usage (RWU): Trained ML models can be deployed and
integrated into production environments through various methods and
platforms, such as cloud platforms, containers (Docker), or edge computing.
In addition, monitoring ML models is essential to detect performance
degradation or potential failures, leading to necessary re-training or
model updates by the previous Model Training component. The RWU
component often incorporates feedback mechanisms that enable continuous
improvement for latest data inputs, as well as the integration of HITL
strategies to further enhance the on-going refinement of AI models.

A HUMAN-CENTRIC SERVICE-ORIENTED APPLICATION

For AI Data Pipelines to enable organizations extract insights and value
from their data effectively, a seamless deployment and integration of the
pipeline with the AI solutions is essential. A Service-Oriented Architecture
(SOA) is an architectural approach wherein distinct, reusable software
components, referred as services, communicate with each other over a
network to achieve specific business functionalities (Schall et al., 2008). This
architectural framework can facilitate the integration of AI Data Pipelines by
presenting its various components as modular, reusable services. By following
this approach, the system achieves loose coupling, thereby enhancing the
flexibility and agility of the pipeline by facilitating independent development,
deployment, and update of the individual components. The integration of
the proposed AI Data Pipeline based on the SOA framework using APIs to
expose services’ functionalities provides a robust and scalable architecture
that promotes modularity, interoperability, and the enforcement of security
and monitoring mechanisms in the system. These characteristics are crucial
to enable more effective HITL interactions through the simplification
of complex processes into more manageable services. Moreover, this
framework also enables the smooth integration of feedback mechanisms
across the various services exposed, fostering continuous improvement and
personalized user experiences.

In fact, HITL integration is imperative for any data-driven application
to achieve full usability and functionality in real-world industrial settings,
ensuring complete symbiosis between humans and Cyber-Physical Systems
(CPS) (Adel, 2022). However, the transition towards the human-centric smart
factory concept introduces challenges such as a prevalent skills gap where
workers might lack the necessary IT expertise to effectively manage advanced
systems (Tan et al., 2019). To this end, Autonomic Computing techniques
can play a pivotal role closing this gap, providing technology with self-
managing capabilities to mitigate the increasing complexity of computing
systems (Gil et al., 2019). Additionally, the cognitive load imposed by
evaluating large datasets, and the need for rapid decision-making under
uncertain circumstances, can overwhelm workers without well-designed
interfaces or adequate support tools. Hence, it is vital to prioritize human-
centric strategies through the design and development of the technology to
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ensure that it is not only intuitive and easy to use, but it is also tailored to
the needs and preferences of users to foster their engagement, satisfaction,
and productivity. Section The AI-DrivenWeb Application In The Aluminium
Use Case provides more information about the proposed user-friendly web
application.

AUTONOMIC COMPUTING FOR SELF-REGULATED AI SYSTEMS

Autonomic Computing (AC) is a computing paradigm initiated by IBM in
2001 and originally inspired by the human autonomic nervous system that
aims to develop computing systems with self-managing characteristics. The
ultimate goal of this paradigm is to reduce human intervention in the rapidly
growing complexity of software systems management, freeing humans from
low-level management tasks, while still maintaining their central role in
providing high-level guidance for their self-management (Parashar & Hariri,
2005).

A common framework to achieve self-management in AC is the MAPE
(Monitor, Analyze, Plan, Execute) loop, which intends to provide systems
with the necessary abilities to autonomously adapt to changing conditions,
recover from failures, and optimize their performance. The Monitor module
is responsible for continuously monitoring the environment and collecting
relevant data about the system’s state. This data is then processed, analyzed,
and interpreted by the Analyze module to identify potential deviations or
anomalies, as well as opportunities for the optimization of the system.
Subsequently, based on the previous data analysis, strategies to maintain,
adjust, and/or improve the system behaviour and attributes are determined
by the Plan module. Ultimately, the planned actions are implemented as
automated responses by the Execute module. The MAPE loop can be
extended to the MAPE-K framework with the addition of the Knowledge
component, which incorporates knowledge-driven reasoning and decision-
making capabilities to the system to operate more intelligently and effectively.
By incorporating the MAPE-K framework, the four main properties of AC
systems can be realized as follows (Vizcarrondo et al., 2017).

Self-configuration: AC systems can automatically configure themselves
based on their environment and requirements to adapt to changing
conditions. For instance, AI algorithms can fine-tune their hyperparameters
and model architectures based on the nature and characteristics of data, as
well as the task to be addressed.

Self-optimization: AI systems can continuously monitor their performance
and resource usage, adjusting their parameters to improve their efficiency.
Optimization methods such as Bayesian optimization or evolutionary
algorithms can be leveraged to fine-tune models. Other algorithms, such
as in Reinforcement Learning, can directly learn, adapt, and optimize their
strategies from their experiences in the environment. Ultimately, techniques
such as re-training (continuous training) can be applied to existing models
to incorporate information from new data without affecting the model
architecture and parameters.
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Self-Healing: Autonomic AI systems can be designed to automatically
detect and diagnose failures and errors in real-time to execute corrective
actions and restore the system functionality. Anomaly detection algorithms
can detect unusual behaviour and data patterns by monitoring the system
status. These algorithms cover statistical methods (e.g., z-score),MLmethods
like isolation Forest and one-class SVM, density methods (e.g., LOF),
and state-of-the-art time series anomaly detection algorithms like Seasonal
Hybrid ESD and Prophet.

Self-Protection: To protect systems from security threats and attacks,
mechanisms to automatically mitigate risks and vulnerabilities can be
implemented in AC systems. For this purpose, AI-powered cybersecurity
systems and techniques such as adversarial training or anomaly detection
algorithms can be deployed to detect, prevent, adapt, and recover from
adversarial attacks. Regarding the performance of AI systems, adversarial
training can also be used to improve AI robustness by preventing algorithms
of being deceived by fake or perturbed data.

METADATA-DRIVEN AUTONOMIC MANAGER FOR AUTONOMIC
COMPUTING CAPABILITIES IN THE AI DATA PIPELINE

To effectively adopt theMAPE-K framework and implement the autonomous
(self) abilities previously described -self-configuration, self-optimization, self-
healing, and self-protection- the Autonomic Manager (AM) serves as the
brain of the AC system. The AM can perform a variety of activities,
including enforcing policies that govern the behaviour and operation of the
AC system, monitoring and analysing the system to detect anomalies or
opportunities for improvement, engaging in decision-making and real-time
problem-solving processes, and consolidating learning strategies to enable
continuous improvement and adaptation. In complex distributed systems,
the AM can also coordinate and collaborate with other system components
to exchange information, or coordinate actions (Vizcarrondo et al., 2017).

In the proposed framework, the AM assumes a central role serving as
an autonomous AI Data Pipeline coordinator and decision-maker, thereby
guaranteeing the AI Data Pipeline Governance. In this way, a continuous
MAPE flow based on Knowledge of the AI Data Pipeline is implemented.
The AM is responsible for continuously monitoring and analysing the state
of the AI Data Pipeline to plan and execute corrective and optimization
actions via the triggering of the autonomous (self) abilities. Thus, the
implementation of the abilities is executed directly on the AI Data Pipeline
for its self-management upon notification from the AM triggers.

As part of the practical implementation of our framework, the Monitoring
module of the AM interacts with the AI Data Pipeline through an Orion
Context Broker via APIs. The Analyze and Plan modules integrate a rule-
based engine whose targets and goals are set by operators considering process
requirements and specifications. Ultimately, the Execution module interacts
with the AI Data Pipeline by triggering the autonomous (self) abilities when
needed, as well as by sending notifications and alarms when abnormal
behaviour is detected. To complement the rule-engine, AI methods based
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on temporal series analysis combined with statistical measures are also
available for anomalies detection. The temporal analysis considers weekly-
and monthly- time windows of data for analysing the evolution of specific
parameters over time. Figure 3 depicts the communication flow between the
different elements of our framework.

For a proper analysis, planning, and execution of corrective and
optimization actions, it is crucial to properly select the data that is shared
from the AI Data Pipeline to the AM. One of the key innovations of the
proposed framework is the use of metadata from the components of the AI
Data Pipeline to better abstract their behaviour and performance.

Figure 3: Architecture of the HITL system for autonomic computing, illustrating the
flow from data ingestion to model training and deployment, with a local MongoDB for
storage and exploration.

By providing metadata the AM can get additional context about
the performance of the underlying components, enabling a higher-level
conceptualization and understanding. Metadata is based on descriptive
statistics of new raw data. Each component of the pipeline can share its own
set of metadata with the AM, hence the distributed nature of the framework.
As an example, the Data Exploration component might send the average
and standard deviation of parameters, e.g., gas and oxygen consumption,
whereas the Model Training component might send the errors obtained
during training e.g., MAE. Furthermore, to guarantee that users are at the
centre of all developments, human feedback is sent to the AM as part of the
data. The rule-engine of the AM includes rules assessing the conformity of
humans with the established AI solutions, serving as triggering events that
activate the autonomous (self) abilities on these solutions.

THE AI-DRIVEN WEB APPLICATION IN THE ALUMINIUM USE CASE

Although the proposed framework based on the AI Data Pipeline with
Autonomic Computing abilities has been designed and engineered as a
technology-agnostic, domain-independent solution, a preliminary integration
in a real (recycled-based) aluminium industrial setting has been performed
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as a validation of functionality and assessment of performance to enable its
continuous improvement.

The recycled aluminium-making process starts with the reception of
materials from different sources. Upon reception, materials are sampled
for proper sorting and storage based on their chemical composition
and characteristics. Based on customer orders on products, which are
characterized by the product norms and their quantities, scraps are selected to
be processed via primary and secondarymelting. This selection is based on the
chemical composition of scraps, their availability at the plant, and their cost.
In secondary melting, alloys can be introduced to refine the melted mixture
prior its moulding and cooling to produce the final aluminium products. The
different stages of the process are depicted in Figure 4.

Figure 4: Schematic diagram of the recycled aluminium production process: from
material reception to final product formation.

The AI solutions developed within the project aim to support operators
in the decision-making process of scraps and alloys (aluminium recipe) via a
Random Forest Regressor for the estimation of the chemical composition of
aluminium mixtures, and a Generative Reinforcement Learning Framework
to generate new recipes based on customer requests as a multi-criteria
optimization problem. The details of the AI solutions are out of the scope
of this paper.

To facilitate the interaction between users and the AI Data Pipeline and the
Autonomic Manager, a web-based interface has been developed following
a human-centric design strategy. By incorporating the targeted users in
the design and development phases of the interface, the application was
unequivocally built around the users’ needs, preferences, and behaviours.
There are two components of the AI Data Pipeline that hold special
significance in terms of HITL interactions: Data Exploration and RWU
components. The Data Exploration component can be accessed through two
different web pages according to the user preferences. On one hand, users can
access data in form of tables, filtering the available datasets according to their
origin, heat process code, dates, and number of samples shown. In addition,
tables can be downloaded in.csv or.xlsx format. On the other hand, users
can visualize the evolution of a set of pre-defined parameters through charts.
Currently, these charts also display statistical measures of the data shown
for visualization e.g., mean and standard deviation. Figure 5 shows the two
discussed pages of the web application for the Data Exploration component.
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Figure 5: Data exploration interfaces in the web application: tabular and graphical
representations for comprehensive analysis of industrial aluminium production
parameters.

The RWU component can also be accessed through two different pages
according to the AI solution to be invoked, as shown in Figure 6. To collect
human feedback on the performance of those solutions, different strategies
have been implemented. In the case of the AI solution that estimates the
chemical composition of scrap-based mixtures, a thumbs-up/thumbs-down
button is available for acquiring the overall satisfaction of users with the
predictions. For the recipe generation algorithm, a multi-criteria evaluation
via a 5-star scoring is integrated to allow users assess the recipes according
to the final chemical composition estimated, the scraps used, and the overall
cost. As previously described, human feedback is used as a satisfaction score
that can trigger the activation of the self-abilities through the rule-engine of
the AM to optimize the AI solutions in the pipeline.

Figure 6: Interactive AI solutions in aluminium production: incorporating user feedback
for chemical composition prediction and recipe generation.

The front-end technologies for the web interface development are HTML,
CSS, and JavaScript. For the back-end framework, Django is used as
the backbone that handles user authentication, database management
(MongoDB), and web-server logic. To isolate potential problems with the
AI solutions, a FastAPI server has been deployed, which is also responsible
for handling communications with the Orion Context Broker of the AM.The
complete application is deployed on a private server configured with Docker
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compose to guarantee that all software dependencies and requirements are
met. The presented set-up, depicted in Figure 7, ensures a seamless interaction
and easy deployment of all the elements of the application, enabling a
smooth communication with the client side and real-time data processing
and analysis.

Figure 7: Dockerized web application architecture: integrating Django, MongoDB, and
FastAPI for efficient data management and real-time processing.

CONCLUSION

This paper presents a novel AI-driven application embedding an AI Data
Pipeline with Autonomic Computing capabilities to strategically integrate
advanced AI technologies in real industrial settings. By employing a SOA that
facilitates the modular integration of AI components, the various services
can be developed and deployed independently, enhancing the flexibility
and scalability of the system. This approach also enables the integration
of human feedback loops to refine the AI functionalities, guaranteeing the
system reliability and AI robustness. By facilitating an intuitive interface
for workers following a user-centric design, the system simplifies human-
machine interactions leveraging real-time data analysis for better decision-
making support. The preliminary integration of the proposed framework
through a web application in the Aluminium sector has proven the system
to be robust and capable of real-time adaptation and optimization.
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