
Human Interaction and Emerging Technologies (IHIET 2024), Vol. 157, 2024, 207–214

https://doi.org/10.54941/ahfe1005479

Survey of Research Issues and Proposed
Solutions for Detecting Parameter
Anomalies in System Logs
Hironori Uchida1, Keitaro Tominaga2, Hideki Itai2, Yujle Li1,
and Yoshihisa Nakatoh1

1Kyushu Institute of Technology, 1–1 Sensuicho, Tobata-ku, Kitakyushu-shi, Fukuoka
Prefecture, Japan

2Panasonic System Design Co., Ltd., 3-1-9, Shinyokohama, Kohoku-ku, Yokohama-shi,
Kanagawa Prefecture, Japan

ABSTRACT

In the ever-evolving field of software development, the demand for automation
of fault analysis that is time-consuming and expertise-requiring is growing. One
solution to this challenge is the study of anomaly detection using text logs, which
has seen numerous research efforts. However, despite the variety of patterns that
system anomalies can exhibit, many studies have predominantly focused on sequence
anomalies. This is largely attributed to the limited availability of datasets, with the
commonly used Loghub data being oriented towards sequence anomalies. This
research addresses the current challenges in anomaly detection models and proposes
several new methods for detecting parameter anomalies. Initially, due to the lack of
datasets of parameter anomalies, we prepared common parameter anomaly scenarios
and compared them with existing sequence anomaly detection models (including
DNN models for sequence anomalies and DNN models using semantic information),
and with a variety of proposed methods. The prepared parameter anomaly patterns
include four Integer types and three String types. For instance, a parameter within a
certain range (-100 to 100) is considered normal, while parameters outside this range
are deemed anomalies. Our proposed method begins by extracting parameters using
LogParser and determining whether they are of Int or String type. For Int types, we
use Z-Score, IQR, K-NN and DBSCAN for evaluation, while for String types, we use
a Bert-based positive-negative classifier. The experimental results showed that the
DNN model for sequence anomaly had an F1 Score of less than 0.5 for all patterns. In
contrast, our proposed methods achieved F1 Scores exceeding 0.9 or 0.8 for almost all
methods, except for one anomaly pattern. It was found that the proposed methods are
effective for common parameter anomaly problems. Furthermore, since our methods
do not require prior training, they are particularly advantageous for ad-hoc learning in
the context of continuously updated software development.

Keywords: Anomaly detection, Software log, Log analysis, Deep learning, Log generator,
Parameter anomaly detection

© 2024. Published by AHFE Open Access. All rights reserved. 207

https://doi.org/10.54941/ahfe1005479


208 Uchida et al.

INTRODUCTION

In the constantly evolving field of software development, there is a pressing
need for the automation of complex and time-consuming fault analysis tasks
that require specialized knowledge. As one solution, anomaly detection
using textual system logs has been extensively studied. However, despite
the variety of anomaly patterns that can occur within systems, much of the
research has focused on sequence anomalies. A significant reason for this
focus is the limited number of dataset types available, with commonly used
datasets like Loghub (He et al., 2020) being tailored for sequence anomalies.
The issue of limited dataset variety has been reported in several studies
(Le et al., 2022; Shilin et al., 2022, Uchida et al., 2023). Moreover, current
log anomaly detection models face the issue of losing parameter information
during preprocessing with LogParsers like Drain (He et al., 2017) and Brain
(Yu et al., 2023), which template the logs. Consequently, some studies have
explored the use of parameter sequence vectors in addition to sequence
vectors (Zhu et al., 2020) and research utilizing sentence information without
LogParsers (Le et al., 2021). While these studies focused on parameters, the
datasets used were designed for sequence vectors and lacked specific anomaly
labels for each parameter. In response to these challenges, this research aims
to automatically generate datasets with typical parameter anomalies to create
an environment suitable for evaluating parameter anomaly detection. Using
these datasets, we will examine the current limitations of anomaly detection
models and propose several new methods for detecting parameter anomalies.
The parameter anomaly patterns prepared include four Integer types and
three String types, such as considering parameters within a certain range
(-100 to 100) as normal and those outside this range as anomalies.

Figure 1: Description of the log format used for log generation and some examples.



Survey of Research Issues and Proposed Solutions for Detecting Parameter Anomalies 209

This research seeks to clarify the following:
RQ1: Accuracy of current anomaly detection models against typical

parameter anomalies.
RQ2: Proposals for newmethods tailored to parameter anomaly detection.

DATASET FOR PARAMETER ANOMALY DETECTION

Due to the absence of readily available datasets for parameter anomaly
detection, we created a custom algorithm for automatic generation. Please
refer to Github for specific implementations https://github.com/hiro877/Lo
gGenerator/tree/ihiet2024.

Table 1. Parameters used to generate logs.

Parameter Description

Total number of logs 40000+1200(parameter logs)
Number of words of content Range: 3∼6
Number of words in content Range: 4∼10
Number of logs per second 15
Number of log types 16+1(parameter log type)
Histogram of logs [14483, 1742, 1738, 1736, 1727, 1726,

1726, 1721, 1702, 1700, 1687, 1686, 1682,
1660, 1644, 1640]

Number of parameter logs 1200: Approx. 3% of total number of logs
Number of parameter logs 240: Approx. 20% of parameter logs

Automatic Log Generation Algorithm

Figure 1 illustrates the log format used for automatic generation and provides
examples of the generated logs. The log format is based on the BGL (Blue
Gene/L supercomputer log) L from Loghub. Considering that only the
content part of the logs is important for a dataset aimed at parameter
anomaly detection, this log generator was designed to create logs with
variables for labels and content parts.

Next, we introduce the log generation system. Table 1 presents the key
variable parameters used within the log generation system. These parameters
were selected based on research that investigated differences in complexity
between research datasets and actual logs in development environments
(Uchida et al., 2024). The parameters used in this study are as shown in
Table 1, which are approximately 1/10th of the corresponding parameters in
the BGL within Loghub.

The strings for the log content part were randomly generated.

Parameter Log Pattern

In this experiment, we prepared seven commonly considered parameter
anomaly patterns, including three Integer types and four String types.
Figure 2 shows the pattern of parameter anomalies in this experiment.

https://github.com/hiro877/LogGenerator/tree/ihiet2024
https://github.com/hiro877/LogGenerator/tree/ihiet2024


210 Uchida et al.

EVALUATED MODELS

In this experiment, we utilized NeauralLog and PLELog as representative
models of sequence anomaly detection due to their high accuracy. The reason
for their selection was based on the assessment that they have a higher
potential for addressing parameter anomalies compared to other models.
Both models were chosen because their use of semantic information was
deemed likely to enable the detection of parameter anomalies, in contrast to
other sequence vectors that exclude parameters. Furthermore, we proposed
four methods capable of detecting parameter anomalies and compared the
accuracy of each model. The following sections will introduce each model in
detail.

NeauralLog

NeauralLog is a novel approach that does not necessitate log parsing.
It directly converts log messages into semantic vectors and employs a
Transformer model to detect anomalies. This method extracts the semantic
meaning of log messages using BERT and identifies anomalies through a
Transformer-based classification model. However, there is a process that
deletes data if the split strings are numerical during the operation of splitting
the logs. Therefore, it is anticipated that NeauralLog will perform poorly in
detecting integer type parameter anomalies in this experiment.

Figure 2: Anomaly parameter patterns.

PLELog

PLELog adopts a semi-supervised approach that uses only the labels of
known normal log sequences to estimate the labels of mixed anomalous
and normal log sequences through probabilistic label estimation. This allows
for leveraging the advantages of a supervised approach while saving time
on manual labeling. Additionally, it deals with unstable log data by using
semantic embeddings and an attention-based (Gated Recurrent Unit) GRU
neural network to efficiently and effectively detect anomalies. The steps for
creating semantic embeddings include 1) log parsing, 2) word embedding,



Survey of Research Issues and Proposed Solutions for Detecting Parameter Anomalies 211

and 3) aggregation based on TF-IDF. During the word embedding process,
non-text tokens (such as delimiters, operators, punctuation, and numbers)
are removed. Therefore, it is predicted that PLELog will perform poorly in
detecting integer type parameter anomalies in this experiment.

Proposed Methods

Initially, parameters are extracted from raw logs using Drain. Next, it
is determined whether the extracted parameter strings are of type integer
or string. If the type is Integer, anomaly detection is performed using Z-
score, Interquartile range (IQR), k-Nearest Neighbour (k-NN), and Density-
Based Spatial Clustering of Applications with Noise (DBSCAN). For String
types, anomaly detection is conducted using a combination of BERT and
Transformer for positive-negative judgment.

Z− score = (X− µ)/σ (1)

X represents an individual data point,µ is the mean of the dataset, and σ is
the standard deviation of the dataset. Data is considered anomalous when the
Z-Score exceeds a threshold of 2.

IQR: The Interquartile Range (IQR) is a measure of variability based on
dividing a dataset into quartiles. The IQR is defined as Q3-Q1, and data
points lying outside Q3+1.5×IQR or Q1–1.5×IQR are considered outliers.

Table 2. Experimental results.

F1-Score PLELog NeauralLog Z Score IQR k-NN DBSCAN

Param 1 0.385 0.000 0.655 0.998 0.821 0.947
Param 2 0.356 0.000 0.617 1.000 0.779 0.902
Param 3 0.177 0.000 0.000 0.000 0.818 0.912
Param 4 0.345 0.000 0.000 0.000 0.000 0.000
F1-Score PLELog NeauralLog DistilBert
Param 5 0.256 0.000 1.000
Param 6 0.320 0.000 1.000
Param 7 0.384 0.000 0.834
Param 8 0.343 0.000 0.061

k-NN: For each data point, the distance to the second nearest neighbour
is obtained. If this distance is greater than twice the average distance to the
second nearest neighbour, the data point is considered anomalous.

DBSCAN: In DBSCAN, points that do not belong to any cluster are
considered anomalous.

DistilBert: DistilBERT is a smaller, faster, and lighter Transformer model
based on the BERT architecture. We used the DistilBERT model fine-tuned
on the Stanford Sentiment Treebank (SST-2) dataset for sentiment analysis
tasks. Items judged as Negative by this model are considered anomalies.



212 Uchida et al.

EXPERIMENTAL METHOD

Sequence Anomaly Detection Models Input

The input utilized sequence data with Window = 20 and Slide = 1.

Dataset Split Ratio

For NeauralLog and PLELog, which are learning-based methods, the dataset
was divided into Training = 0.6, Validation = 0.3, and Test = 0.1.

On the other hand, the proposed method, which does not use learning,
created distances and classes based on all logs and detected anomalous data.

Accuracy Evaluation Method

In the accuracy comparison, the accuracy of anomaly detection on the test
data is verified using each model after training. Each model is evaluated
for classification performance using the F-measure value; The F-measure is
an evaluation index that indicates the balance between detection accuracy
and the number of anomaly detections. Here, the F-measure is computed as
follows.

Precision =
TP

TP+FP

Recall =
TP

TP+FN

F −measure = 2·Precision·Recall
Precision+Recall (2)

Where,
TP: Anomaly instances correctly classified by the model
TN: Normal instances correctly classified by the model
FP: Normal instances misclassified by the model
FN: Abnormal instances misclassified by the model

Figure 3: The histograms for the datasets used in Param 4.



Survey of Research Issues and Proposed Solutions for Detecting Parameter Anomalies 213

EXPERIMENTAL RESULTS

We conducted an accuracy evaluation of NeauralLog, PLELog, and the
proposedmethod on the dataset with each parameter anomaly pattern shown
in Figure 2. The experimental results are presented in Table 2. Looking
at the results, it is evident that both NeauralLog and PLELog have low
accuracy for both Int and String types. On the other hand, the proposed
method shows high-accuracy results, except for the experiment with Param 4.
Particularly, DBSCAN shows high accuracy for Integer types, and Bert shows
high accuracy for String types. It is understandable that NeauralLog and
PLELog would exhibit decreased accuracy due to their processes that exclude
numerical parameters. However, the low accuracy with String-type data,
which are not excluded, indicates that these models struggle with detecting
parameter anomalies for each line. It is important to note, though, that these
models are specialized for sequence anomalies.

Next, we consider the experiment with Param4. The histograms for the
datasets used in Param 4 are shown in Figure 3. While the parameters for
Normal and Anomaly in Param4 do not overlap, they are randomly selected
from the same range of values. As a result, it is thought that classification
based on clustering or distance did not function effectively.

Moreover, it is understandable why Param5 and Param6, which conform
to positive-negative judgment, would have high accuracy. Additionally,
it makes sense that Param8, which does not adhere to positive-negative
judgment, shows low accuracy. Contrarily, the high accuracy observed in
Param7 can be attributed to the influence of the value following “MODE_”.
However, it is necessary to note that in this instance, since anomalies are
defined as cases with high values, the method will not function in situations
that oppose this definition. However, it should be noted that this time, since
high values were defined as anomalies, the approach will not work in cases
that contradict this definition.

CONCLUSION

In this study, we created a dataset for parameter anomaly detection using our
custom log generator and conducted an investigation into the challenges of
parameter anomaly detection for current anomaly detection models, which
had not been thoroughly explored before, and examined proposed methods.
As a result, we found that sequence anomaly detection models struggle to
detect parameter anomalies on a per-line basis. On the other hand, we
demonstrated the potential to detect anomalies by extracting parameters
and using parameter-specific machine learning methods, as done with the
proposed methods. However, we also discovered anomaly patterns that
cannot be addressed with simple machine learning methods, indicating the
need to explore various approaches, including specialized DNN models for
parameter anomalies.We hope that there will be an increase in research using
parameter anomaly log generators like the one we have created.



214 Uchida et al.

ACKNOWLEDGMENT

This work is supported by a grant from Panasonic System Design.
This work was supported by JST, Kyutech Research Fellowship, Grant

Number JPMJFS2133.

REFERENCES
Bei Zhu, Jing Li, Rongbin Gu, and Liang Wang., (2020) “An Approach to Cloud

Platform Log Anomaly Detection Based on Natural Language Processing and
LSTM”, ACAI ‘20: Proceedings of the 2020 3rd International Conference on
Algorithms, Computing and Artificial Intelligence, pp. 1–7, https://doi.org/10.
1145/3446132.3446415.

He. P, Zhu. J, Zheng. Zm and Lyu. M, (2017) “Drain: An Online Log Parsing
Approach with Fixed Depth Tree”, 2017 IEEE International Conference on Web
Services (ICWS).

He. S, Zhu. J, He. P, R. M, and Lyu. M, (2020) “Loghub: A Large Collection of
System Log Datasets towards Automated Log Analytics”, Arxiv Website: https:
//arxiv.org/pdf/2008.06448.pdf.

Le. V and Zhang. H, (2022) “Log-based anomaly detection with deep learning:
how far are we?”, ICSE ‘22: Proceedings of the 44th International Conference
on Software Engineering, pp. 1356–1367.

Le. V.-H., Zhang. H., (2021) “Log-based Anomaly Detection Without Log
Parsing”, in Proceedings of the 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 492–504,
doi: 10.1109/ASE51524.2021.9678773.

Shilin. H., Xu. Z., Pinjia. H., Young. X., Liqun. L., Yu. K., Minghua. M., Yuning. W.,
Yngnong. D., Sarabanakumar. R., & Qingwei. L., (2022 November 9) “An
empirical study of log analysis at Microsoft”, ESEC/FSE 2022: Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 1465–1476, https://doi.org/10.
1145/3540250.3558963.

Tree, IEEE Transactions on Service Computing, vol. 16, issue 5, pp. 3224–3237, doi:
10.1109/TSC.2023.3270566.

Uchida. H, Tominaga. K, Itai. H, Li. Y, and Nakatoh. Y., (2023) “Verification
of Generalizability in Software Log Anomaly Detection Models”, Anomaly
Detection - Recent Advances, AI and ML Perspectives and Applications,
doi: 10.5772/intechopen.111938.

Uchida. H,Tominaga. K, Itai. H, Li. Y, andNakatoh. Y., (2024) “Differences between
research log datasets and development field logs and creation of complexity
evaluation index”, Pertanika Journal, under review.

Yu. S, He. P, Chen. N, and Wu. Y, (2023) “Brain: Log Parsing with Bidirectional
Parallel”.

https://doi.org/10.1145/3446132.3446415.
https://doi.org/10.1145/3446132.3446415.
https://arxiv.org/pdf/2008.06448.pdf
https://arxiv.org/pdf/2008.06448.pdf
https://doi.org/10.1145/3540250.3558963
https://doi.org/10.1145/3540250.3558963

	Survey of Research Issues and Proposed Solutions for Detecting Parameter Anomalies in System Logs
	INTRODUCTION
	DATASET FOR PARAMETER ANOMALY DETECTION
	Automatic Log Generation Algorithm
	Parameter Log Pattern

	EVALUATED MODELS
	NeauralLog
	PLELog
	Proposed Methods

	EXPERIMENTAL METHOD
	Sequence Anomaly Detection Models Input
	Dataset Split Ratio
	Accuracy Evaluation Method

	EXPERIMENTAL RESULTS
	CONCLUSION
	ACKNOWLEDGMENT


