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ABSTRACT

Land-based aquaculture farms use seawater transported from nearby seas instead of
large amounts of freshwater. A seawater recirculating filtration system is essential
for sustainable fish farming; however, this system has limitations in improving the
levels of ammonia, nitrite, and nitrate, which are directly linked to fish mortality.
Therefore, most land-based aquaculture farms periodically exchange a certain amount
of seawater to maintain optimal water quality. Despite these efforts, managing water
quality remains a significant challenge due to the fluctuating levels of these harmful
substances. This study aims to address this challenge by predicting the levels of
ammonia, nitrite, and nitrate—the primary causes of fish mortality in land-based
aquaculture—using AI models. The training data were collected from various sensors
installed in the farms, including those measuring water temperature, dissolved
oxygen, dissolved solids, pH level, oxidation-reduction potential, salinity, nitrate, and
ammonia. By leveraging this comprehensive dataset, we evaluated the performance
of multiple models, such as Random Forest (RF) and K-Neighbors Regressor (KNN).
The study demonstrated that these models could achieve remarkable performance
metrics, with the Random Forest model recording an MAE of 0.0150, MSE of 0.0008,
RMSE of 0.0289, R2 of 0.9999, RMSLE of 0.0039, and MAPE of 0.0024. Such high
accuracy levels indicate that AI-based water quality prediction models have significant
potential for effectively monitoring and predicting fish health in aquaculture farms.
Implementing these AI models can lead to more proactive and precise management of
water quality, ultimately reducing fish mortality rates and enhancing the sustainability
and profitability of aquaculture operations.
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INTRODUCTION

Aquaculture in underwater farms is increasingly gaining importance globally
as a response to the rising demand for seafood. However, securing optimal
conditions for fish growth and health within aquaculture facilities continues
to be a challenging task. This is particularly true in land-based facilities,
where there is an absolute dependence on seawater circulation and filtration
systems.
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Land-based aquaculture requires monitoring and measuring various water
quality parameters such as pH, temperature, and dissolved oxygen (DO)
(Tziortzioti et al., 2019; Mwegoha et al., 2010). Dissolved oxygen, the
most critical factor for fish survival, does not dissolve well in water, and its
solubility decreases sharply as temperature and salinity increase (Timmons
et al., 2018; Chumkiew et al., 2019). DO affects fish growth and feed
efficiency (Buentello et al., 2000; Zhang et al., 2011). Fluctuations or
suboptimal temperatures can affect feed utilization and cause stress in fish
when grown at temperatures higher or lower than ideal, potentially leading
to disease (Timmons et al., 2018).

The Recirculating Aquaculture System (RAS) provides advantages
for efficiently managing fish growth by maintaining appropriate water
temperatures and optimal oxygen saturation levels, as well as purifying
impurities. Physical and biological filters in the RAS system reduce
concentrations of nitrogen compounds such as ammonium and nitrites,
which are the existing alternatives to diluting seawater. Ammonium and
nitrites, being toxic to fish (Timmons et al., 2018), are critical components
that must bemanaged in aquaculture. Ammonia, a key element of ammonium
and nitrites, occurs naturally from the decomposition of fish waste and
leftover feed but is highly toxic (Wicks et al., 2002), weakening the gills
and potentially causing death. RAS converts ammonia into less toxic nitrites
and further into nitrates, thus increasing the water reuse rate (Suurnäki
et al., 2020). The standards for recycled water vary by fish species, but
maintaining nitrates below 100 mg/L for Atlantic salmon has been shown
not to significantly affect their growth and health (John Davidson et al.,
2017). Chronic exposure to NO3 in turbot has been found to cause persistent
toxicity leading to death, particularly causing methemoglobinemia, ion
homeostasis disruption, lipid peroxidation, and abnormal cell apoptosis
in flounder (Jiachen Yu et al., 2021). Additionally, attention needs to be
paid to the accumulation of metabolites such as cortisol and testosterone,
particularly steroids (Mota et al., 2017). It has been indicated that highly
toxic hydrogen sulfide (H2S) can be produced during the RAS filtration
process, and early detection is crucial (Salim et al., 2023).

Efforts to predict water quality using AI are continuously being made.
Experiments using convolutional neural networks (CNN) and long short-
term memory (LSTM) have been conducted to predict basic water quality
information (Haq et al., 2022). These experiments have forecasted
fundamental water quality data. Common basic water quality parameters
such as temperature, pH, and dissolved oxygen (DO) can be measured using
portable devices like the Multi 3410 (WTW GmbH) (Chun et al., 2018).
While portable alternatives are available, nitrates, nitrites, and phosphates
are often more accurately measured in laboratories using ion exchange
chromatography and suppressed conductivity detectors (e.g., Dionex DX-
500, Dionex ICS1600, Dionex Integration HPIC; Chun et al., 2018;
Lindholm-Lehto et al., 2020, 2021).

This paper investigates an AI model that infers the presence of substances
such as ammonia, nitrites, and nitrates, which significantly impact fish
mortality, using basic sensor data.
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EXPERIMENTS ENVIRONMENT

The experimental species is the olive flounder, and it has been observed that
there is no mortality rate when ammonia levels are up to 12.5 mg/L, but
survival rates begin to decrease when exposed to 25 mg/L for more than 12
hours (Kim et al., 2019). Similarly, nitrite and nitrate concentrations also
impact survival rates. For nitrite, a significant decrease in survival rate was
observed at 800 mg/L (40% survival), and no fish survived 12 hours later at
1600 mg/L. There was no mortality under nitrite concentrations of 100, 200,
and 400 mg/L. For nitrate, survival rates decreased at concentrations above
2000 mg. No fish survived after 72 hours at this concentration. However, no
mortality was observed at control concentrations and at levels below 1000
mg/L.

Figure 1: Survival rate (%) of flatfish, paralichthys olivaceus exposed to ammonia,
nitrite, and nitrate for 96 h (Kim et al., 2019).

An experiment was conducted to observe changes in water chemical
concentrations in an indoor aquaculture facility raising olive flounder.
Approximately 300 fish were cultured (see Figure 2(a)), and significant
variations in water concentrations were evident with fish growth. The
recirculating aquaculture system (RAS) utilized in the facility includes a
module combining a 40-ton drum filter, a skimmer, and a biological filtration
unit, as depicted (see Figure 2(b)).

Figure 2: Integrated overview of aquaculture density and recirculating aquaculture
system components.
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Sensors were installed in the aquaculture facility to facilitate real-time
monitoring of water temperature, dissolved oxygen, total dissolved solids,
acidity, oxygen redox potential, and salinity, while ammonia levels were
measured manually. Experiments were conducted to identify the optimal
water quality conditions for the growth of flatfish, considering factors such
as temperature, salinity, and pH.

EXPERIMENTS

The heatmap illustrates the correlation coefficients between various water
quality parameters. Each cell represents the correlation between two
variables, with color intensity indicating the strength of the relationship,
ranging from blue (negative correlation) to red (positive correlation).
Subsequently, various water quality data such as Total Phosphorus (TP),
Dissolved Oxygen (DO), Total Dissolved Solids (DS), acidity (pH), Oxygen
Redox Potential (OR), and Salinity (SL) were collected, and the correlation
analysis results (see Figure 3) revealed several characteristics. DO and DS
parameters demonstrate a very strong positive correlation with a coefficient
of 0.99, indicating that increases in dissolved oxygen are closely associated
with increases in dissolved solids. A moderately strong positive correlation of
0.58 is observed between TP and SL, suggesting that higher concentrations
of total phosphorus are generally accompanied by higher salinity levels. OR
and ACQU_TIME exhibit a positive correlation with a coefficient of 0.40,
implying a potential relationship between the measurement duration and
changes in redox potential. A negative correlation of -0.28 between SL and
ACQU_TIME is observed, indicating a decrease in salinity over time.

Figure 3: Correlation heatmap of key water quality parameters in aquaculture settings.
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CONCLUSION

In conclusion, this study highlights the efficacy of AI-based models in
predicting levels of critical substances such as ammonia, nitrite, and nitrate
in land-based aquaculture environments. Through extensive data collection
from various sensors and subsequent analysis using advanced AI algorithms,
including Random Forest and K-Neighbors Regressor, the research has
demonstrated that these models can achieve high accuracy. The Random
Forest model, in particular, showed exceptional performance metrics, with
a mean absolute error (MAE) of 0.0150, mean squared error (MSE) of
0.0008, root mean square error (RMSE) of 0.0289, R2 of 0.9999, root mean
square logarithmic error (RMSLE) of 0.0039, and mean absolute percentage
error (MAPE) of 0.0024. These results indicate that AI-driven approaches
can significantly enhance the monitoring and prediction of water quality
parameters, crucial for maintaining fish health and reducing mortality rates
in aquaculture settings.
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