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ABSTRACT

With the high levels of stress in Singapore, mental and emotional well-being is an
important health and social issue today. Research has shown the positive effects of pet
ownership on mental and emotional well-being, however challenges of owning a pet
in Singapore such as pet licensing restrictions, high costs, fear of losing a pet, a busy
lifestyle and even allergies may deter pet lovers from owning a pet. Thus, we propose
a technology-driven solution to emulate the useful effects of pets while mitigating the
challenges of pet ownership. This project focuses on designing emotion recognition
and reinforcement learning models as a stepping stone to individualise responses to
a person’s emotions. Our approach utilises the output from the emotion recognition
model as an input in the proposed reinforcement learning algorithm. Hence, the
paper first compares pre-trained and custom trained facial recognition models, and
postulates the use of physiological signals via hardware sensors to further enhance
the emotion recognition model. This is inspired from the ability of pets to perceive
and respond to different emotions based on facial expressions and physiological
signals like heart rate. The paper then outlines the development of novel K-Bandit
algorithms in reinforcement learning tested on simulated reward functions, with the
aim of optimising parameters for individualised responses to a person’s emotions.
Since reinforcement learning is typically used in simulation scenarios, this paper
works towards developing a model that will eventually learn a person’s preferences
in real time by monitoring their emotional changes. To conclude, this project has
showcased the feasibility of facial expressions and physiological signals for emotion
recognition, and established the effectiveness of our proposed parameter optimisation
functions in the K armed bandit reinforcement learning model to customise responses
based on an individual’s emotions. We hope this paper can act as a basis for future
works in creating a human-friendly prototype to emulate man’s best friend.

Keywords: Human systems integration, Machine learning, Reinforcement learning, Empathetic
robotics, Human robot interaction

INTRODUCTION

Studies have shown that Singaporeans face high levels of stress
(Cigna Singapore, 2022), so measures to improve mental and emotional
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well-being are becoming increasingly important. Singapore’s recent launch
of a national mental health strategy highlights this issue’s significance (Teo,
2023). A study conducted by Boehringer Ingelheim Animal Health Singapore
found that pets had a positive impact on the mental well-being of the majority
of participants (Goh, 2021). Moreover, research has found that the presence
of pets contributed to a lower resting heart rate as well as a faster recovery
to resting heart rate when feeling stressed (Allen et al., 2002). However,
Singaporeans may be deterred from pet ownership due to pet licensing
restrictions for Housing & Development Board (HDB) flats (Housing &
Development Board, n.d.), the high cost of owning a pet, estimated to be
around $102,000 over a pet’s lifespan (Wong, 2022), and the rising cost of
veterinary fees and services by at least 10 - 20% due to inflation (Ee, 2023).
Moreover, allergy considerations could discourage pet ownership, with
allergic rhinitis typically triggered by pet dander affecting up to 13.1% of
the Singapore population (Pharmaceutical Society of Singapore, 2023).

AIMS & OBJECTIVES

We propose a solution to incorporate artificial intelligence and robotics to
emulate the useful effects of pets while mitigating the challenges of pet
ownership, focusing on designing emotion recognition and reinforcement
learning models as a stepping stone to individualise responses to a person’s
emotions. This paper aims to (1) contribute to existing literature regarding
emotion recognition and (2) explore the use of reinforcement learning in
individualising responses based on emotions. The paper will first delve into
the emotion recognition details before investigating the use of the K Armed
Bandit reinforcement learning model in individualising actions based on
emotions detected. Given time and resource constraints, our research is
focused on the theoretical aspects of the larger idea. Since the hardware can
be developed from pre-existing frameworks, we scoped our research to the
computational approach of emotion recognition and reinforcement learning
taken for simulating pet ownership, which should be taken as the primary
focus in this research endeavour.

METHODOLOGY

In the development of an emotional recognition model, no active
participation was required from those asked to contribute to the dataset.
Hence, there were no practices constituting “direct human participation” or
involving their associated safety concerns in this stage of the investigation.
Friends and family who consented, submitted images of their interpretations
of the seven pre-identified basic emotions (anger, fear, happiness, sadness,
surprise, neutral and disgust). The use of custom training data was
hypothesised to allow for a wider range of possible expressions to be
classified as the same emotion for more accurate emotion recognition in
practical implementations.

The reinforcement learning aspect of research aimed to create an algorithm
that allowed our robot prototypes to effectively and efficiently adapt to
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feedback provided on the effectiveness of its selected emotional response
in real-time constraints. This focus was selected due to a gap of knowledge
identified in current RL algorithms, whose training times were not emulative
of actual learning rates. (The design of many RL algorithms and hence
what was considered “efficient” in current literature was done for systems
where training and interaction processes were done separately, as opposed
to concurrently in our proposed design application.) We first create a
testing ground for our algorithm by parameterising human-pet companion
interactions. A basic three stage framework for an interaction was proposed
(E.g. Approach > Interaction > Retreat) with each stage being composed
of various mutable parameters (E.g. Approach considerations may be the
speed of the approach, or the distance from the human a companion stops
at) Background research regarding how interaction parameters generally
evolved with respect to varying conditions allowed constraints to be made
for the Reinforcement Learning Reward equation (the function to be
maximised during the training process) allowing for more optimisations in
our algorithms to be proposed. Each algorithm would then be tested with
the metrics of accuracy and efficiency. Environmental conditions (noise and
error in the input information) was also simulated to assess the stability of
our proposed algorithm in applied conditions.

MACHINE LEARNING IN EMOTION RECOGNITION

A study conducted by the University of Veterinary Medicine Vienna indicates
that dogs can distinguish and respond to 6 basic facial expressions: anger,
fear, happiness, sadness, surprise, and disgust (Siniscalchi, d’Ingeo and
Quaranta, 2018). Hence, we chose to explore facial expressions as a form
of emotion recognition. Psychologist Dr Paul Ekman (1992) identified the
same 6 emotions as universal emotions. Another study corroborated Ekman’s
claim of universal facial expressions, finding that people from different
cultures share approximately 70% of facial expressions (Cowen et al., 2021).
However, Jack et al. (2012) shed light on the differences in facial expressions
across cultures, such as Chinese participants conveying emotion through
the eyes or Western Caucasian participants expressing emotions with the
eyebrows and mouth.

The FER2013 facial expression dataset comprises mainly of Caucasian
and African Americans (Lukac et al., 2023). A custom dataset for Singapore
was created through mass data collection to test the accuracy of a pre-
trained model DeepFace against a custom trained Teachable Machine model
(Teachable Machine, n.d.). The Teachable Machine model was neural
network based, trained using the Tensorflow-Keras library in python.
A 50/50 split was used for training and testing data. The custom trained
model had 75 images for the training dataset of each emotion to ensure fair
distribution amongst the different classes of emotion.

PHYSIOLOGICAL SIGNALS IN EMOTION RECOGNITION

Pets such as dogs are able to detect the rise or fall of heart rate (Deangelis,
2020), and can be trained to monitor blood oxygen saturation (SPO2)
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levels (Leomiti and Ausman, 2023). Hence, we chose to explore the use of
physiological signals in addition to facial expression to increase the accuracy
of emotion recognition. A study on the reliability of physiological responses
induced by basic emotions concluded that physiological features, such as
skin conductance level (SCL), heart rate (HR) and blood volume pulse
(BVP), would be important for emotion recognition in the human computer
interface area (Jang et al., 2019). Other studies have found that blood oxygen
levels (SPO2) were also a possible physiological feature to classify emotions
(Alkawaz et al., 2015). Stress, typically associated with fear and anger (Gu
et al., 2019), as well as sadness whichmay lead to crying (Raypole, 2020), can
lower blood oxygen level (Cox, 2022). Emotions can lead to differences in
blood oxygen levels (Alkawaz et al., 2015).When interfacing theMAX30102
heart rate sensor on the Arduino, output data of SPO2 levels and heart rate
was obtained. This shows the feasibility of including physiological signals to
enhance emotion recognition.

From the accuracy results of both pre-trained and custom trained emotion
recognition models, it is shown that the custom trained Teachable Machine
model has a higher average accuracy than that of the pre-trained DeepFace
model (as shown in Table 1).

Table 1. Accuracy of emotion recognition models.

Emotion Recognition Deep Face Teachable Machine

Happy 45.3% 78.7%
Sad 28.0% 73.3%
Surprise 42.7% 57.3%
Angry 28.0% 53.3%
Fear 57.3% 74.7%
Disgust 8.0% 12.0%
Neutral 77.3% 48.0%
Average 40.9% 56.8%

It should be noted that disgust is the emotion with the lowest accuracy
score. An article exploring the use of a convolutional neural network trained
on the same FER2013 dataset also had poor accuracy in classifying disgust,
citing the smaller number of disgust facial expressions in the training dataset
as the limitation (Tang, 2019). However, the custom trained Teachable
Machinemodel had the same number of images for all classes of emotion, and
still had a significantly low accuracy score for disgust. Thus, further research
could be undertaken in this area to investigate the difficulty in classifying this
emotion.

REINFORCEMENT LEARNING ALGORITHMS TO SIMULATE
ORGANIC LEARNING BEHAVIOUR

Reinforcement learning algorithms are fundamentally maximisation
problems: they evolve policy algorithms to select actions that optimise
reward functions derived from intended outcome behaviours. We aim to
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make this process more efficient for practical simulation of organic learning
behaviour. With the parameter framework in our proposed robot design, our
proposed use of reinforcement learning intends to tune the action parameters
based on a Reward function that reflects positive changes in sensor data
when a specific action configuration is executed.

For the proposed inputs into the standard reinforcement learning model,
the State is determined through the facial detection model described above.
The Reward is determined by the reward function R(x) which encompasses
the “positive changes” detected in sensors. Determining the actual reward
functions and sensor response correlations are not discussed in this paper
and are proposed as future work to be completed when progressing towards
eventual testing and deployment.

We discuss assumptions and constraints that can be made to the reward
function R(x) where optimisations to the action selection algorithm may
be proposed. It is asserted that there is only one optimal parameter value
at any given state of companion owner interaction. While the optimal
parameter itself may shift with a greater number of encounters, multiple
configurations of a robot’s parameters cannot be equally preferred. It is
assumed that for reward functions where parameters may appear to have
two or more similarly preferred values, that only one of such is eventually
optimised. In a reward function that has only one stationary maxima, and
when provided with the range where this point may lie, the optimum point
can be estimated through analysing the function value at regular intervals
k within the specified range. The subsequent removal of values that return
lower values of the function, and addition of values between those who return
higher values of the function, would shift the range in a manner such that the
exact maxima point would eventually be found. This principle of successive
halving is often applied in the hyper-parameter optimization of neural
network configurations. This algorithm can reliably determine the optimum
point in single maxima functions within the time constraints suitable for
authentic pet-human interactions. Research on human-robot interaction has
emphasised the need for individualised technology development (Søraa et al.,
2022), with a study investigating living with robots noting that participants
became increasingly comfortable with the robot approaching them closely
over time (Mehta and Losey, 2023). The assumption made is that there is
a single optimising value for each mutable parameter in the robots action
array, resulting in a reward function with a single maximum. This allows for
parameter optimization through a sequential decision-making algorithm.

THE K ARMED BANDIT MODEL

The Stochastic K-Armed Bandit is a Single State Markov Decision Process
that frames sequential decision-making under uncertainty problems. It
abstracts the action selection as: within a K number of slot machines that
return Reward R drawn randomly from a fixed probability distribution,
and maximises the cumulative rewards for N slot machines and an array
of actions {ai = 1, ai = 2, ... ai = N}, where the action selected at a time step
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t is denoted as At. This results in reward Rt, the mean reward of the action
number i, vi is denoted as:28

vi = v(ai) = E[Rk|Ak = ai] (1)

vi is initially unknown and is approximated with greater time steps t as:

v̂i, t = v̂t(ai) =

∑j = 1
t−1 Ri,j

ni,k
(2)

where Ri,j is the reward from action ai at step t and ni,k is the selection
count of the action ai prior to 2. Rearranging (2), a recurrence relation is
obtained, to update the estimated value v̂ t with each step of the algorithm:

v̂k =
1

t + 1
(Rt−1 − v̂k−1) (3)

The selection of an action uses the epsilon greedy approach: for specified
number ε and randomly generated number p, if p � ε, an action is
selected by taking the largest reward At = argmaxai{vi,t, vi + 1,t...},
whereas otherwise randomly selected from the action array. In this
way, a balance is struck between the maximisation of historically
rewarded actions, and the exploration of new potential strategies. Such
an approach can be applied to the algorithm described in 3.1 to
approximate Reward function maximas, with the range divided into k
intervals being taken as the action array and with the Reward value
R taking up the value of the reward function R(x) instead of a static
fixed value. The subsequent section describes this implementation. For
the Reward Function R(x) with no local maximas and given an initial
search range [a, an], this range is divided into a k array of “arms”
A = {a1, a2, ... an}, then fed into a k number of slot machines,
which returns their corresponding input from the reward function e.g.
{R(a1), R(a2), ...R(an)} . The K bandit model in 3.2 selects from the array
of slot machines and “plays” until the proportion of the most historically
selected actions from all choices exceeds a specified confidence value C.
Thereafter, the average rewards for each “arm” would be sorted, discarding
“arms” from a lower performing half and pruning the array down to a
size bk2c. The array is then resorted, with new arms being inserted between
neighbours as their mean, obtaining a new set of arms A of original length
k. The K bandit model then plays and prunes recursively, until the range of
A falls below a specified convergence value, µ. As such, an accurate range of
values for where the Reward maxima lies is obtained. The successive halving
algorithm was tested: Provided with an initial range from 1 to 60, the hidden
maxima value of 31.5 was reached by the algorithm after 6 interactions
(translated as 6 different companion, pet encounters), demonstrating the
capability of successive halving in tuning parameters within a relatively few
number of iterations.
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ALGORITHM 2 GRADIENT ASCENT

While Successive Halving is an efficient and effective algorithm for
determining maximas of reward functions that remain unchanged
throughout the duration of interaction, it is unable to adjust for changes
should the optimal value of the reward function shift during the course of
the interaction. This presents an important drawback to be considered, as
the optimum parameter value seldom remains unchanged with respect to the
time step of the model. For example, it can be reasonably asserted that human
companion interactions become more trusting with an increased number of
encounters. In such a case, the optimum value for parameters such as the
distance of approach would vary with the extent of trust. As such we draw
from various gradient descent techniques commonly applied in machine
learning to allow for our model to dynamically shift along with the Reward
equation when a change is detected, thus taking into account that human
preferences may change over time. For the Reward Function R(x) including
an additional parameter t, R(x, t) whereby for all parameters t in R(x, t) the
corresponding R(x) contains no local maximas, and provided an initial array
of parameters P, gradient ascent can be used to recursively shift the parameter
selection range towards the new function maxima: Rx + 1,t = Rx,t + α ∂R∂x
(where α is the “learning rate”). The value of ∂R∂x is approximated by taking
the gradient between the Reward function at the maximum and minimum
values in the parameter array P: ∂R

∂x ≈
R(argmax(P), t) − R(argmin(P), t)

argmax(P) − argmin(P) . The
model would default to responding either as the current maximum or
minimum in the parameter array, depending on the remaining value required
to approximate the gradient. α is taken as the range(P). The bounds of P
are then shifted by the value α ∂R∂x , with an additional step added in the
step direction (positive or negative and taken as the opposite sign to the
initial gradient: ∂R∂x 1). As such values of P progresses towards the maxima,
resizing in the direction of search to favour values closer to convergence at
later recursions. When ∂R

∂x falls below a “find condition value” λ ( ∂R∂x → 0
approaching the maxima), successive halving with input P is then used to
determine the final new maxima range.

Models utilising sensor data as input are subject to significant amounts
of noise and distortion, owing to minute uncontrolled variations in the
environment of choice, and inherent uncertainties within our chosen
instruments, as such it is imperative that the proposed algorithms maintain
a high level of accuracy outside of the assumption of a smoothed reward
function. We select the reward equation for successive halving arbitrarily as
a distribution function with a maxima of 0.40 at parameter 51.5. Noise
was simulated by randomly scattering inputs about the range of the true
function value, whereby distortion could be varied through changing the
range variable r. The convergence and error scatter plots for 5 trials, r= [0.01,
0.02,... 0.05] are below. The range of R(x) in our test selection was [0.00,
0.40] with a peak distortion r = 0.05 translating to a 12.5% error overall.
Despite this, successive Halving maintained a high accuracy range between
99.2 - 99.8% when varying the distortion values, with all configurations
converging after 4–7 interactions. This demonstrates the resilience in the
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algorithm to a reasonable level of distortion within input data. Gradient
Ascent was similarly tested where a quadratic reward function R(x) was
switched after the 10th stable interaction from amaxima of 31.5 to 11.5, with
a similar 99.0% - 99.8% accuracy range, converging 10–14 interactions after
the change in reward function, demonstrating also a resilience to a reasonable
level of distortion within input data.

Variations in the reward function’s shape were initially hypothesised to
have significant effects on the number of interactions required for models to
converge towards maximas: this is significant given the amount of variability
that reward functions may take between individuals in our selected use case,
and may present a significant design flaw to be imperatively addressed. We
similarly arbitrarily select a distribution function with a maxima of 0.40 at
parameter 51.5, but include additional parameters to allow variations in the
equation shape, in the dimensions of translation and scaling. Notably scaling
parallel to x and y axis had no effect on the number of interactions required
to converge to stability, when translation between the range of the function
was performed, an interesting pattern emerged, indicating that the number
of interactions required for convergence increases as the maxima approaches
the bounds of the specified function range but also contains periodic regions
at certain translation values where an increase in the number of interaction
is noted.

EVALUATION AND CONCLUSION

The single maxima constraints may result in reward functions being
unsupported by the gradient ascent algorithm, as there is currently a
possibility of approaching a local maxima. Additionally, both algorithms are
susceptible to butterfly effect conditions, particularly the convergence value
in Algorithm 1 and “find condition” in Algorithm 2 as values greater than
a specified value would often result in highly inaccurate final parameters.
While a solution was found in setting both variables to be extremely small,
there was a significant tradeoff in the number of interactions required.
Tests however demonstrate that successive halving is capable of converging
parameter values towards an unknown optimal value within a reasonable
number of iterations. Additionally, further optimisations to the gradient
ascent algorithm are proposed to minimise its susceptibility and improve its
performance. Further research can be conducted to address limitations in this
project. First, further experimentation to determine the extent of effectiveness
of incorporating physiological signals in emotion recognition. Second, more
would need to be done for the development of reward equations with sensor
data as input in real world conditions. Finally, further research of a physical
prototype for mass testing on human participants.

To conclude, this project has achieved its goals of showcasing the feasibility
of facial expressions and physiological signals for emotion recognition. This
project has also established the effectiveness of our proposed parameter
optimisation functions in the K armed bandit reinforcement learning model
to customise responses based on an individual’s emotions. We hope that this
project has provided a new perspective as to how artificial intelligence and
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robotics can be used to emulate the positive effects of pets, and acts as a basis
for future works in creating a human-friendly prototype to emulate man’s
best friend.
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