
Human Systems Engineering and Design (IHSED 2024), Vol. 158, 2024, 21–32

https://doi.org/10.54941/ahfe1005525

Does it Feel Safer? A Pilot Study on the
Stress Levels of Humans for Varied
Robot Control Strategies and
Collaboration Scenarios
Heiko Renz1, Khazar Dargahi Nobari1, Mohammed Faizan2,
and Torsten Bertram1

1Institute of Control Theory and Systems Engineering, TU Dortmund University,
Dortmund, Germany

2Former Student of TU Dortmund University, Dortmund, Germany

ABSTRACT

Human-robot collaboration is an essential factor in current industry and social
applications. A key aspect of meaningful and effective collaboration is the safety of
the human worker. Therefore, different objective metrics allow researchers to assess
safety based on measurements like distance between humans and robots, speed of the
robot, or force exerted by the robot. However, for an effective collaboration, objective
safety metrics are essential, as well as the subjective perception of safety by the user.
To investigate the subjective stress level of users during human-robot collaboration,
we conducted a pilot study with 20 participants with varied control strategies and
collaboration scenarios. Furthermore, a stress prediction model is proposed based
on the collected data. The results show that the collaboration scenario significantly
influences the subjective stress levels of users, and trends in the data indicate that the
robot’s collision avoidance strategy also impacts stress levels. The proposed stress
prediction model shows the potential to forecast the stress levels of users based on
the collected data, enabling possible feedback options for different control solutions.
However, further studies are required to investigate generalized stress prediction
models for various collaboration scenarios and control strategies.
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INTRODUCTION

Improving productivity and acceptance of human-robot collaboration (HRC)
is a crucial factor for the success of robots in various areas, and it is
increasingly important in industry and social applications. For the successful
integration of robots into human environments, the perceived safety of the
human worker is a key factor (Weiss et al., 2021). The perception of safety is
influenced by various factors, not limited to the distance between the human
and the robot or the robot’s speed. Also, it includes factors like the robot’s
appearance, the task the robot is performing, and its behavior. However,
measuring the subjective perception of safety is challenging, as various factors
influence it and can vary between individuals. Extensive studies are required
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to understand the impact of different factors on the subjective perception of
safety and to develop strategies to include these factors in robot design and
control strategies in HRC scenarios.

Related Work

The safety of HRC has been studied extensively in the past. Since this
research area is interdisciplinary, it is approached from different perspectives,
including psychology and engineering. Technical evaluations often focus
on objective safety metrics to improve HRC by developing mechanical
structures that increase safety (Malzahn and Bertram, 2014), strategies for
impact minimization (Haddadin et al., 2012), or various collision avoidance
algorithms (Renz et al., 2023a).

The present related work section focuses on psychological evaluations of
users’ subjective perceptions regarding different aspects of HRC. Due to the
wide range of research in this area, this section is not exhaustive but aims
to provide an overview of relevant human stress studies in collaboration
regarding different scenarios and control strategies. Arai et al. (2010)
investigate the impact of robot proximity and speed in industry collaboration
scenarios and the user’s notification about robot motions. The authors
conclude their work with recommendations for the design of industrial HRC
regarding the distance between robots and humans (> 2 m) and the speed
of the robot toward the human (< 500 mm/s). Furthermore, a notification of
robot motions is recommended to reduce the user’s mental strain. The subject
study of Dragan et al. (2015) examines whether different robot trajectories
influence objective performance measures and subjective ratings regarding
multiple aspects like fluency of team interaction, trust, and safety. The robot
trajectories are classified into functional, predictable, and legible during
a collaborative task but do not consider required adaptions for collision
avoidance. The authors conclude that users prefer legible trajectories, leading
to higher performance. To directly optimize the user’s mental load, it is
possible to integrate physiological signals into the control strategy of the
robot (Messeri et al., 2021). A learning automaton optimizes the robot’s
production pace in the collaborative production task based on the user’s
stress level and task performance. Nevertheless, the authors do not consider
different scenarios and online collision avoidance strategies. Su et al. (2023)
investigate the effects of interactions on users’ stress levels. The authors
use NASA Task Load Index (NASA-TLX) questionnaires and electrodermal
activity (EDA) to measure users’ stress levels during human-robot interaction.
The results show that different interaction modes between humans and
robots lead to other stress levels for users that generally favor straightforward
interactions. Instead of using solely normalized EDA measurements, machine
learning approaches are beneficial for stress detection on EDA data (Zhu
et al., 2023) and reason the usage of prediction models, including further
input features, in this work. The inclined reader is also referred to the
review from Lu et al. (2022), with details about research on stress and safety
awareness in HRC.
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Contribution

The contribution at hand presents a pilot study on the subjective stress
levels of users during HRC. The following key contributions are made:
First, the statistical evaluation of a pilot study with 20 participants is
presented, investigating the impact of three stages of collaboration scenarios.
Secondly, we extend the statistical evaluation to the effect of three different
robot trajectory planners and controllers regarding their collision avoidance
strategies on the subjective stress levels of users. Thirdly, we present the
evaluation of neural network models that predict human stress levels based
on the collected data, including two validation strategies to investigate the
generalizability of stress prediction models.

STUDY DESIGN & DATA PROCESSING

This section describes the study design, data recording, and processing for the
pilot study. Before the participants start the experiments, they are introduced
to the study and sign a declaration of consent. The ethics committee of TU
Dortmund University approved the study.

Study Design

The pilot study was conducted with 20 male participants aged 21 to 26
(µ = 23 ± 1.38) years. All participants are recruited from the university’s
electrical engineering department. Note that three students of the study are
student assistants in the research group and have experience with the applied
Universal Robot 10 (UR10). Nevertheless, they are included in the statistical
analysis since they do not have any further experience with the specific
experiments.

Each participant performs seven experiments with varied collaboration
scenarios and collision avoidance strategies in the laboratory. Fig. 1 shows
an exemplary image of the task setup in the robot lab. The participants
are requested to accomplish assembly tasks sitting at a table. For each of
the seven experiments, the participants constructed a different wooden toy
based on a digital instruction manual. Two of them are visible in Fig. 2. After
each experiment, the participants complete the NASA-TLX questionnaire to
evaluate their stress levels subjectively.

The collaboration scenarios are divided based on the required collaboration
between humans and robots. Each scenario is assigned to a level of human-
robot interaction based on the taxonomy of Mukherjee et al. (2022). The first
scenario belongs to level one (L1 – Coexistence), where the human and the
robot work independently in a separate workspace without interaction. In the
laboratory setup, L1 is realized by the participant working on the assembly
task on one table and the robot working on an organization task on another
table. The second scenario belongs to level two (L2 – Cooperation), where
the human and the robot work together in the same workspace without any
direct interaction but with a shared goal that requires subsequential actions
of the human and the robot. In the laboratory setup, L2 is realized by the
participant working on the task on one table and the robot delivering the
required parts for the assembly task from another table and placing them in
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front of the participant on the table. The third scenario belongs to level three
(L3 – Collaboration), where the human and the robot work together in the
same workspace with direct interaction and shared goals. In the laboratory
setup, L3 is realized by the participant working on the assembly task on
one table and the robot delivering the required parts for the assembly task
from another table and placing them in the hand of the participant (see
Fig. 1). The scenarios are abbreviated as L1, L2, and L3 in the remainder of
this work.

Figure 1. Exemplary image of the task
setup. The participant is working on
scenario L3 while assembling a wooden
toy.

Figure 2. Two exemplary assembly tasks
of the study.

Each participant executes L1 with the UR10 default controller (C1), that
stops only at a collision. Since the workspace is separated, no collision
avoidance strategy is required for L1, and the scenario is only executed
once for each participant. L2 and L3 are executed with C1 and a different
controller with two collision avoidance strategies (C2 and C3). The default
controller C1 applies the teach pendant of the UR10 to move the robot. As a
control strategy for C2 and C3, a Moving Horizon Planner (MHP) is applied
(Krämer et al., 2020; Renz et al., 2024). The MHP plans a trajectory for
the robot and optimizes the trajectory regarding a cost function, including
terms to reach the goal, restrict robot joint velocities, and avoid collisions
and proximity with the human. To consider dynamic obstacles like humans
in the environment, the MHP plans a 3 s trajectory and replans it with 10
Hz. The static collision avoidance strategy C2 assumes the human is static for
optimizing the 3 s trajectory for each planning cycle. Since this assumption
is often invalid in real-world scenarios, the predictive collision avoidance
strategy C3 predicts human motion (prediction horizon 0.4 s), including
uncertainties for each planning cycle (Renz et al., 2023b).

The remainder of this work declares each experiment as a combination of
the chosen scenario and controller type. For example, a cooperation scenario
with the MHP controller and a static collision avoidance strategy are labeled
as L2-C2.

Data Collection and Processing

The participants’ physiological parameters and upper body motions
are recorded during the experiments. An Empatica E4 (Empatica Inc.,
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MA, U.S.) wristband collects the physiological parameters of heart rate,
skin temperature, and EDA. Furthermore, an Optitrack motion capture
system (NaturalPoint Inc., OR, U.S.) records the upper body motions of the
participants. Only the upper body motions are collected since the participants
are sitting during the experiments, and the upper body motions are the
most relevant for the assembly task. Since the measurements are available
with different sampling rates, the data are synchronized and resampled in
a primary-secondary scheme with the blood volume pulse (BVP) signal as
the primary signal with a frequency of 64 Hz. Slower signals like the skin
temperature and the EDA are set as fixed until a new value is available.
The motion data exhibit a higher sampling rate and are only requested
at the arrival of a new BVP value. The data for each experiment and
participant is preprocessed before they are used to train and evaluate the
stress prediction models. BIOBSS python package (Taşcı et al., 2024) provides
functions for filtering, normalizing, segmenting, and extracting features
from the physiological signals EDA and BVP. Furthermore, the average of
BVP and EDA of experiment L1-C1 serve as a baseline for normalizing
the physiological signals of all experiments. As a feature from the motion
data, the mean velocity of each measured body part for each segment is
extracted. All data are segmented to increase the data for the model training
and to consider a time history required for meaningful stress prediction.
A sliding window approach serves for segmentation with window lengths
tWin from 10 s to 150 s and step sizes tStep between windows of 5 s and
10 s. Each window is labeled with the NASA-TLX score of the participant
for the related experiment. The prediction models include six model types,
namely Support Vector Machines (SVM), Multi-Layer Perceptrons (MLP), K-
Nearest-Neighbours (KNN), Gaussian Naive Bayes (GNB), Random Forest
(RF), and AdaBoost (AB), with various settings (kernel, layer sizes, activation
functions, number of neighbors, etc.).

Each participant digitally fills out the NASA-TLX questionnaire (NASA-
TLX questionnaire, n.d.) after each experiment. As a result, the questionnaire
provides a weighted rating score to assess the task load of the participant. To
normalize the scores, the z-score for the weighted rating is calculated for each
participant (zpart) and for all participants (zall).

EVALUATION & DISCUSSION

This section presents the evaluation of the pilot study and the results of
the stress prediction models. The evaluation is divided into two parts.
First, a two-way analysis of variances (ANOVA) (Girden, 1992) is applied
to investigate the impact of the collaboration scenarios and the collision
avoidance strategies on the subjective stress levels of the participants. The
statistical evaluation is followed by discussing the results and interpreting
Tukey’s honestly significant difference (HSD) (Abdi and Williams, 2010)
post-hoc test results. Secondly, the assessment of the stress prediction
models is presented for different data segmentation and preparation, model
architectures, and validation strategies.
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Impact of Key Factors on Stress Levels

The questionnaire’s statistical analysis includes all 20 participants. However,
due to technical issues, three ratings are missing (one for each participant 6,
15, 20); therefore, three scenarios only include 19 samples instead of 20 (see
Fig. 5).
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Figure 3: zpart of participants’ NASA-TLX ratings for each participant.

As a first step, the difference between the ratings of different participants
is investigated. The hypothesis that the participants’ ratings are significantly
different is tested with a t-test. Fig. 3 shows zpart of the NASA-TLX ratings.
The applied t-test shows that the participants’ ratings are not significantly
different regarding the participant-wise normalized NASA-TLX scores.
Therefore, the normalized zpart is used for further statistical analysis, and the
impact of the different scenarios and controllers is investigated. Subsequently,
an investigation of zpart compares the seven experiments. Fig. 4 shows zpart of
the NASA-TLX ratings for the different experiments, including the results of
pairwise t-tests. The evaluation of this figure only treats some general trends
and significant differences between the experiments. Fig. 4 shows that the
participants’ stress levels differ for the experiments. It is visible that L1-C1
has a lower median and upper quartile than the other experiments, followed
by L2-C2 and L3-C2. The highest median and upper quartile are visible for
L2-C1. The included t-test results show that the participants’ stress levels
statistically differ between six pairings. Since significant differences occur
between scenarios and controllers, a detailed two-way ANOVA is applied
to investigate this further. To classify different zpart into stress labels and
enable a stress prediction, the scores are also divided into three categories:
low stress (zpart < 0), medium stress (0 ≤ zpart ≤ 1), and high stress (zpart > 1).
Fig. 5 shows the count of stress labels for each experiment and underlines the
previous general statements about the experiments. Experiment L1-C1 has
the highest count of low-stress labels, followed by L3-C2 and L2-C2. The
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highest count of high and medium stress labels is visible for L3-C1, followed
by L2-C1, indicating that C1 in the scenarios L2 and L3 leads to higher stress
levels than C2 and C3.
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Figure 4: zpart of participants’ NASA-TLX ratings for each experiment, including results
of pairwise t-test (A: p < 0.05, B: p < 0.01, C: p < 0.001).
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Figure 5: Count of stress labels for each experiment.

For the two-way ANOVA, we assume that the results from experiment
L1-C1 are independent of the controller since the workspace is separated
and no collision avoidance strategy is required. Based on this assumption,
the results of L1-C1 are repeated for L1-C2 and L1-C3 to achieve a
balanced number of samples for L1. Table 1 shows the results of the two-
way ANOVA for zpart. The result of the two-way ANOVA shows that the
interaction of the scenario and the controller is insignificant (p = 0.18664),
and an analysis of the main effects is sufficient. The scenario’s impact is
significant (p = 0.00002), while the controllers’ impact is not substantial
for a significance with p = 0.05042. Since the controller impact is still close
to being significant, a post-hoc test examines the controller effect in detail.
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Table 1. Results of the two-way ANOVA for zpart (6Sq: sum of squares, df: degrees of
freedom, bold indicates statistical significance with α = 0.05).

6Sq df F-stat. p-val.

Scenario 17.935 2 11.333 0.000
Controller 4.809 2 3.039 0.050
Scenario:Controller 4.942 4 1.562 0.187
Residual 138.471 175

The post-hoc test is based on Tukey’s HSD test and investigates the
impact of the controller and scenario regarding significant differences inside
each group. Tukey’s HSD test is common to investigate the significance
of differences between group members after ANOVA proved a significant
difference for one group. The results of the post-hoc test with a threshold α =
0.05 are shown in Table 2. The first three rows of Table 2 show the post-
hoc test results for the different scenarios, and the last three rows for the
different controllers. It can be seen that L1 statistically differs from L2 and
L3 regarding the participants’ stress levels, while the pair L2 and L3 do not
differ significantly. One reason for this is that the separation of the workspace
influences the participants’ stress levels more than the difference between
cooperation and collaboration. Regarding the controllers, C1 statistically
differs from C2, while the other pairs do not show significant differences. This
shows that the static collision avoidance strategy C2 impacts the participants’
stress levels more than the predictive collision avoidance strategy C3.

Table 2. Results of the post-hoc test for zpart for scenario and controller comparison
(Hyp. Reject: hypothesis rejection (bold indicates a rejection)).

95% Confidence Interval

Group 1 Group 2 Group
Mean Diff.

Adj. p-val. Lower Upper Hyp. Reject

L1 L2 0.609 0.001 0.225 0.992 True
L1 L3 0.716 0.000 0.334 1.098 True
L2 L3 0.107 0.798 −0.288 0.503 False
C1 C2 −0.436 0.029 −0.836 −0.036 True
C1 C3 −0.231 0.382 −0.642 0.180 False
C2 C3 0.205 0.447 −0.195 0.605 False

In the following, we discuss the results of the statistical evaluation, the
impact of the collaboration scenarios, and the collision avoidance strategies
on the subjective stress levels of the participants, connecting the results of the
different evaluation steps. The significant difference between the separated
workspace and the shared workspace with the post-hoc test underlines
the first statements regarding the higher stress levels of L1, also discussed
for Fig. 4 and Fig. 5. The stress level in shared workspaces is higher than
in separated workspaces, while the difference between cooperation and
collaboration is not significant. L2 and L3 are not significantly different
because of the experiment design. In both scenarios, the proximity between
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the human and the robot is similar, and the separation by a table and the
shared goal are, except for the assembly task, the same. This indicates
that the task load is not significantly influenced by whether the robot
hands over the required parts or places them close to the human. This
results in the conclusion that industry settings with shared goals can be
designed cooperative or collaborative while achieving other optimization
goals like production efficiency. When discussing the control and collision
avoidance strategies, the results of the two-way ANOVA indicate that the
impact of the control and collision avoidance strategy is briefly below the
significance level. Nevertheless, a trend is visible, and we executed a post-
hoc test to investigate the impact of the controllers in more detail and
show that only the static collision avoidance strategy C2 significantly differs
from the default controller C1. Connecting this difference to the stress
results of each experiment (Fig. 4 and Fig. 5), it is visible that the static
collision avoidance strategy C2 significantly reduces participants’ stress. The
predictive collision avoidance strategy C3 results in a higher performance
regarding objective metrics (Renz et al., 2023b) but does not significantly
reduce the participants’ stress levels compared to C1. A reason for this is
robot motions to avoid collision with possible future human poses that are
not intuitive for the participants and cause a higher stress level. Furthermore,
various parameters in C2 and C3 require further investigation to optimize
the participants’ stress levels. In particular, parameters for C3 regarding
prediction horizon and uncertainty consideration are currently set to default
values and lack individual optimization considering participants’ preferences.
Possible solutions to this problem are also hybrid approaches of C2 and C3
to combine the higher performance on objective metrics of C3 and the better
individual interpretability of C2 during different periods of experiments. For
industry settings utilizing HRC, the results show that interpretability and
predictability of the robot’s motion are essential for the participants’ stress
levels and should be considered during the design phase.

Stress Level Prediction

For stress level prediction models the data of three participants (1, 3, 4)
are excluded due to data collection issues. Due to missing stress labels and
physiological signals the data from four more participants (2, 6, 15, 20)
are impaired for single experiments. Therefore, the training and evaluation
process is repeated with 13 participants D13 and 17 participants D17,
including the unaffected data of the four participants. This work applies the
six mentioned models to prove the feasibility of predicting participants’ stress
levels based on the data. The results are only shown for the varying best-
performing parameter settings for each model type. Furthermore, the models
are evaluated using different data segmentations and preparation strategies
(see Section Data Collection and Processing), and only the best results are
shown to keep the evaluation concise. Since extracting features from the
physiological signals and the motion considers different time, frequency, and
statistical features of EDA and BVP and the mean velocity of the motion
data for each segment, the number of possible features is 95 in the current
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setting. However, to reduce the number of features and to avoid overfitting,
a feature selection is applied based on the correlation of the features with the
stress labels. The threshold for the feature selection is set to 0.1 for the stress
labels using zall. For predicting stress labels zall serves as the score since it
calculates the z-score over all participants and not only for each participant,
and a preliminary test shows an increased prediction performance. All models
are trained and evaluated with a 10-fold cross-validation (Cross) and a Leave-
One-Participant-Out (LoPo) validation and test strategy. The classification
accuracy and the F1-score for Cross are visible in Table 3 and for LoPo in
Table 4, including the data preprocessing parameters. Bold values indicate
the best performance in the column.

Table 3. Accuracy and F1-score for prediction models with cross.

Type D13 D17

tWin tStep Accuracy F1-Score tWin tStep Accuracy F1-Score

SVM 100 5 0.997 0.997 100 5 0.927 0.927
MLP 150 5 0.998 0.998 100 5 0.913 0.913
KNN 100 5 0.999 0.999 100 5 0.926 0.926
GNB 100 10 0.618 0.611 100 5 0.565 0.552
RF 150 5 0.998 0.998 100 5 0.902 0.902
AB 150 5 0.900 0.899 150 5 0.806 0.806

Table 4. Accuracy and F1-score for prediction models with LoPo.

Type D13 D17

tWin tStep Accuracy F1-Score tWin tStep Accuracy F1-Score

SVM 100 10 0.476 0.519 80 10 0.472 0.710
MLP 150 5 0.527 0.548 60 10 0.451 0.676
KNN 100 10 0.501 0.539 100 10 0.460 0.678
GNB 100 5 0.569 0.559 40 5 0.513 0.670
RF 150 10 0.526 0.543 100 10 0.491 0.688
AB 150 10 0.542 0.586 150 10 0.529 0.722

The results indicate different opportunities and limitations. Performance
is higher using D13 and Cross than using D17. A reason could be that the
models overfit on D13 and are capable of predicting with high accuracy.
A possible solution is a larger dataset that includes more participants.
Furthermore, different models reach high results, only differing in the second
or third decimal place, showing that different model types are capable of the
prediction tasks. Models like MLP, KNN, and RF perform solidly on both
strategies compared to the others and could be a starting point for further
investigations. For more extended window sizes tWin, the prediction mostly
performs better, and it is reasoned that models predict better considering an
extended history. When using stress prediction models in generalized settings,
e.g., for humans not included in the training data, a significant decrease
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in performance is visible (compare Tables 3 and 4). Different reasons for
this limitation are possible and include besides others the parameter settings
of the models, the model types themselves, or the data preprocessing and
normalization since all of them potentially influence the generalizability.

CONCLUSION & OUTLOOK

The work at hand presents the results of a pilot study with 20 participants
to investigate the impact of robot control and collision avoidance strategies
during different levels of HRC on human stress. The study shows a significant
effect of collaboration, and trends in the data justify further investigations
of stress-optimized control strategies and recommendations regarding the
design of collaborative tasks. Furthermore, the data collected during the
study is utilized for training and evaluating simple prediction models for
stress-label forecasting. The evaluation reveals limitations regarding the
generalization of tested models.

A subject study with more and diverse participants is required to
further examine the impacts and the option of stress label prediction in
different scenarios and collision avoidance strategies. Furthermore, future
work should include different model types and parameter settings for the
controllers and the models.
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