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ABSTRACT

The Graph Model of Combinatory Logic with its elements, the Combinators, is an
algebraic representation of neural networks, both for natural and artificial nets. Solving
the Control Problem leads to intelligent behavior in the sense of teaching, learning, and
conceptualization. This requires the construction of specific fixed-point combinators
that implement feedback loops based on empirical sensing. This paper explains the
role of the control problem, how to solve it and how to algebraically construct these
fixed-point combinators. It proposes a blueprint and technical design for intelligent
AI-supported systems that can teach themselves new skills. This is an alternative to
deep learning, which requires large training sets.
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INTRODUCTION

Artificial Intelligence (AI) has been around for more than hundred years,
initially by concepts only, but humans have been dreaming of intelligent
machines and artificial beings since its beginning. One of the first mentions of
mechanical robots equipped with νóoς (English: nous, reasonably behaving
autonomous robots of the Greek god Hephaistos) appears in the Iliad
(Homer, 1898). Nevertheless, the current hype – the third of its kind in 50
years – is around software that can make use of big data and chats a lot about
everything but understands nothing. The advent of Large Language Models
(LLM) (Wolfram, 2023) made this hype possible, although its use – outside of
management reports, probably – is quite limited to homework cheating, arts
creation, production of fake images and spreading fear among employees
who are not sure whether their work is valuable enough to withstand job
replacement by some AI-enabled tool.

However, the 2012 breakthrough made it possible to solve large sparse
matrices of neural networks using parallel processing (Hinton, 2012). This
made a difference. For the first time, glimpses of real intelligence have
been observed in very large LLM, suggesting that neural networks can
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exhibit intelligence indeed, and that might even hold for biological neural
networks where such rather rare events have enabled an incredible growth
of technology and science especially in the last few centuries.

A SHORT HISTORY OF ARTIFICIAL INTELLIGENCE

State of the Third AI-Hype

While the first AI hype was largely focused around the first perceptrons and
attempts to understand natural language (Winograd, 1972) by transforming
language into grammar trees, the second hype occurred around 20 years
later when expert systems promised to ease access to specialist knowledge
considerably. Expert systems exploit some knowledge base and provide
sophisticated knowledge retrieval functionality.

Until the arrival of big data, or Data Science, the collection of data
proved to be a major hurdle for commercial success. Notable exceptions
include the search engines such as Google (Langville & Meyer., 2006) for
searching the Internet and maybe Wolfram|Alpha for mathematical and
scientific knowledge (Wolfram, 2023).

Nevertheless, advances in neuroscience and computing power triggered the
third AI hype in the early 2010s. Again, neural networks became the focus of
interest, and as their size increased by factors, they proved capable of taking
on several traditional programming tasks. This is because translation among
different languages is among the key capabilities of LLMs. Why should an
LLM not be able to translate a system requirements specification into code?
This is because detailed and meaningful system requirements specifications
are among human dreams that so far never materialized, same as with fully
autonomous cars.

Since equation (1) needs a finite set on the left-hand side, most probably it
is a consequence of the undecidability of predicate logic (Gödel, 1931) that
meaningful requirements specification remains a dream, forever.

From Dream to Reality

In 1920, after the shocking discovery that first-order logic remains
undecidable (Gödel, 1931), there were attempts to fix the problem, mostly by
limiting or forbidding for-all quantifiers. The idea is great when we remember
the incredible suffering and damage that such quantifiers have caused in
society and politics, whether through racism or prejudice. Curry et al. (1972)
invented around 1930 Combinatory Logic. By avoiding the quantifiers of
traditional predicate logic, it serves as the theoretical basis of mathematics
and, above all, computer science. Fifty years later, Engeler and Scott found
that a Graph Model exists that represents combinatory logic in an algebraic
way (Engeler, 1981). The graph model consists of the powerset of Arrow
Terms

{x1,x2, . . . ,xn} → y (1)

representing directed graphs such as neural networks. The x1,x2, . . . ,xn
refer to the preceding nodes of node y. Adding weights in the nodes creates
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an algebraic model of neural networks (Fehlmann & Kranich, Preprint,
2024). The elements of the powerset of arrow terms we call Combinators.
Knowledge thus is represented by combinators that constitute a neural
network.

Such neural networks work as a Perceptron (Minsky & Papert, 1972)
and can be trained to recognize patterns, or as an LLM, for instance the
Generative Pretrained Translator ChatGPT (Wolfram, 2023). We use this
algebraic model to identify intelligent AI behavior.

While ChatGPT has the capability to chat only, it can be combined with
a knowledge source such as Wolfram|Alpha to answer relevant questions
(Wolfram, 2023). This is called Retrieval-Augmented Generation (RAG)
(Gao, et al., 2024). It means that an LLM works together with a knowledge
base. This requires that the knowledge is presented to the LLM in the form
of a vector that codes for the facts. Once this interface works, adding more
factual knowledge becomes cheap and simple, without requiring any new
training effort for the LLM. The LLM still becomes not intelligent in the
sense that it can learn how to learn, as every human or animal baby does.
The term “intelligent” is misleading because the English word “intelligence”
is associated with two very different concepts:

• LLMs and big data analytics are “intelligent” in the sense of the kind of
intelligence that for instance pertains to organizations such as the FBI and
the CIA, referring to the ability to collect relevant data;

• Nous (νóoς ) means that there is an understanding for the contextual
situation, thus the ability to learn on the spot from context or from the
physical environment.

Recently, signs of unexpected behavior of large neural networks,
suggesting νóoς , have been observed (Zhong et al., 2022), and Panigrahi
and his colleagues at Princeton University found ways how to locate specific
skills in a very large LLM (Panigrahi et al., 2023). This means that the
algebraic Graph Model can be applied to artificial neural networks. Both
findings are predictable by the graph model of combinatory logic. The graph
model postulates the existence of Combinators, specific sets of arrow terms
according to equation (1) that have a structural effect on neural networks
by rearranging knowledge and skills according to certain rules describing
calculation and reasoning. Examples of such combinators can be found in
the literature (Zachos, 1978; Bimbó, 2012).

Engeler explained in his seminal paper about “how does the brain think”
(Engeler, 2019) in which way the graph model can be used to algebraically
construct combinators that learn and teach the biologic neural networks, the
brain. This construction can be carried over to artificial nets thanks to the
discovery of Panigrahi.

IMPLEMENTING COMBINATORS IN AI-ENABLED SYSTEMS

Combining Combinators

We use an analogue of Einstein’s summation convention xi to denote a set
{x1,x2, . . . ,xn} (Fehlmann, 2020, p. 6). Here, i∈ N is not simply an index, but
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we understand i as a choice function that selects the relevant preconditions
from a set of possibilities. This is related to the intuitionistic variant of the
axiom of choice, see (Fehlmann & Kranich, 2020).

Two combinatorsM and N, i.e., two sets of arrow terms, can be combined
as follows:

M ·N =
{
b
∣∣∃ai→ b ∈M; ai ∈ N

}
(2)

Equation (2) means, if there are combinators bi in combinator N that
satisfy some preconditions ofM, then some of the right-hand combinators in
M hold also for the combination M ·N. This yields a directed graph. This is
the motivation for calling it a “Graph Model” (Fehlmann & Kranich, 2024).
If the nodes carry a weight, the “existence” of an ai is to be replaced by
“exceeds the threshold value”.

The alert reader will have noticed that we are using a mathematical trick
here, namely inflating the arrow terms to a recursively defined set of arrow
terms consisting of arrow terms.

You can base this powerset on the null set. Then, weights in nodes play no
role in equation (2). If you base the powerset on some non-empty set of, say,
Observations, then the powerset describes the behavior of artificial neural
networks. As an example, we look at those used for visual recognition. The
observations describe sensor input, and results of equation (2) might classify
objects recognized. The response of our neural network might be used to
control actuators such as a steering gear.

Combinators containing arrow terms of the form ai → b only are
called Concepts. Concepts can be independent from any application domain
and thus can implement general principles of thought and reasoning in an
Intelligent System.We use this term interchangeably with the termAI-enabled
system. Combinators might contain both observations and concepts and have
infinite set size.

In any case, the powerset is closed with respect to the application (2) and
is also Turing-complete, i.e., it has the necessary structure to perform all
theoretically possible calculations, see Engeler (Engeler, 1981). This finding
explains why artificial neural networks have become so powerful.

The Lambda Combinator

The graph model also includes Lambda terms (Barendregt & Barendsen,
2000). Lambda Terms introduce a variable x in M, allowing for an
application of M to some argument N

λx.M ·N (3)

In this case (3), N replaces all occurrences of x in M. For formal
definitions, consult (Fehlmann, 2020, p. 5). In the graph model, Lambda
terms contain no observations; thus, it is a concept. It has the form of a
complicated structural element whose application does not depend on its
nodes’ weights (Fehlmann, 2016, p. 326ff). For this characteristic, we call it
Lambda Concept. For a proof of Barendregt’s theorem for the graph model,
see Fehlmann (Fehlmann, 1981).
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Barendregt’s Lambda calculus (3) means that programmable terms exist
in the context of knowledge, making fixed rules part of general knowledge.
For humans, this is nothing surprising; for machines, it is good to know
that observation-independent rules exist like those used in social interactions
between humans.

Similar to computer programming, you can write Lambda terms that
contain no open variable terms, or you can write programs that process
observations.

Fixpoint Combinators

Given any combinatory term Z, the Fixpoint Combinator Y generates a
combinatory term Y · Z, called Fixpoint of Z, that fulfils Y · Z=Z · (Y · Z).
This means that Z can be applied as many times as wanted to its fixpoint and
still yields back the same combinatory term.

In linear algebra, such fixpoint combinators yield an eigenvector solution
to some problem Z; for instance, when solving a linear matrix. It is therefore
tempting to say, that Y · Z is a solution for the problem Z.

Using Lambda Calculus notation, the fixpoint combinator can be
written as:

Y : = λf.
(
λx.f · (x · x)

)
·
(
λx.f · (x · x)

)
(4)

Translating (4) into a combinator term in the graph model proves possible.
It becomes a bit lengthy but demonstrates how Combinatory Logic works
(Fehlmann & Kranich, 2022).

However, the fixpoint combinator is not the solution to all our problems.
When applying Y, or any other equivalent fixpoint combinator to a
combinatory term Z, reducing the term by repeatedly using rule (2) does not
always terminate. An infinite loop can occur, and sometimes must it occur,
otherwise Turing would be wrong and all finite state machines would reach
a finishing state (Turing, 1937).

Controlling Combinators

The concept of Control involves a Controlling Operator C which acts on a
controlled object X by application C ·X. Control means that the knowledge
represented by X is completely known and described. It is a similar approach
to establishing a fixpoint.

Accomplishing control can be formulated by (5):

C ·X = X (5)

The equation (5) is a theoretical statement, usually referring to an infinite
loop process. For solving practical problems, X must be approximated by
finite subterms.

Thus, the control problem is solved by a Control Sequence X0 ⊆ X1 ⊆

X2 ⊆ . . ., a series of finite subterms and the controlling operator C,
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determined by (6):

Xi + 1 = C ·Xi, i∈ N (6)

starting with an initial X0. This is called Focusing. The details can be found
in Engeler (Engeler, 2019, p. 299). The controlling operator C gathers
all faculties that may help in the solution. Like equation (4), controlling
operators consist of structural content rather than of individual observations.
The control problem is a repeated process of substitution, like finding the
fixpoint of a combinator.

Within this framework, it is possible to define models for problem solving,
software and system testing, and general reasoning (Engeler, 2019). Engeler
constructs controlling combinators for a violinist, and for a mathematician.
Both learn thanks to an Attractor. In the case of the violinist, the attractor
points out when an action on the violin sounds right and when it is rather
distorted. In the case of an artificial mathematician, advice is needed when
the reasoning used is correct and logically based on axioms. Just guessing, or
pretending without proof, is not acceptable, even if the claim is correct. This
is supervised learning, not necessarily for a whole neural network, only for
some part of it that is involved in the task.

Moreover, learning is something that happens internally in the brain.
Theoretically, this could also happen in an artificial neural network, thanks
to the Turing-completeness of the graph model. However, it is unclear
how control combinators can become part of an artificial neural network.
Structural combinators as in equation (4) are difficult to implement, because
they would not appear in a weight matrix. Nor can we easily locate and
identify Lambda concepts in a biological neural network. It touches on the
question of where consciousness resides (Hepp, 2020).

Implementing Controlling Combinators

In theory, control combinators are easy to construct. Most controllers simply
provide a feedback loop in which the appropriate parts of the neural network
are trained to do the right thing. Engeler’s violinist, for example, learns to
play the violin by fine-tuning the parts of the neural network that control
the actuators that hold the violin and pluck the string. It’s easy to imagine
a robot performing these tasks. All you have to do is give it feedback via a
microphone and compare the result with a reference recording. Technically,
the design and construction of such a violinist robot certainly is challenging.

All AI-enabled applications are a mixture of traditional programming,
mostly in Python, and an AI-engine such as a neural network. Python
is the most common language used for such tasks (Python, 2001-2024).
According to the COSMIC standard (ISO/IEC 19761, 2019), these Python
programs implement a few Functional Processes that move data groups
between devices, permanent storage, and other applications. The data is
processed, and new data groups are created. They furnish the data into the
input layer of the AI-Engine and decode data from the output layer. ChatGPT,
for example, is a loop with a prompt and a memory function that leads to
a response. This implements a simple Lambda concept with only four data
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movements. Our violinist needs a few additional functional processes that
connect and control sensors and actuators on the violin.

If the neural network is multi-purpose, then the violin skill uses only
some parts of the graph representing the neural network. Panigrahi proposed
recently how to identify areas in a neural network that contribute to some
specific skills of this AI engine (Panigrahi et al., 2023). This is a necessary
condition for deliberately defining control combinators in artificial neural
networks because it must be able to identify those parts of the network that
can be focused on an attractor. This is part of its reason for existence.

Controlling combinators can be thought of as Lambda concepts involving
observations. The key to intelligence – in the sense of νóoς – is that
human beings use a lot of controlling combinators freely. Babys have natural
controlling combinators that teach them how to communicate, eat, talk, and
walk. Animals have similar, often more specific controlling combinators that
enable them to survive without spending much time on learning. Why should
this not become possible for artificial intelligence too?

The difficulty is that Lambda concepts are external to today’s AI
architecture. Artificial neural networks have a layered architecture with an
input and an output layer. Between input and output layers, they consist
of a sequence of attention and hidden layers holding the weights of the
neural network nodes. The graph is ordered; it has no loop. Natural neural
networks, in contrary, have loops. The graphmodel also has loops; otherwise,
fixpoint and control operators would not exist.

Making AI Intelligent

The key to intelligent systems is to adapt architecture such that control
combinators can be implemented. Such an architecture is most likely
a combination of traditional functional processes with neural networks.
Ideally, these functional processes are freely conceivable and can be
configured on the spot, to meet changing requirements.

The programmer can prepare program patterns, implementing control
combinators. This means its functional processes compare the output of
the AI engine with some reference and prepare an input vector for the AI
engine that reflects the learning. Any deep learning strategy can be used,
whatever fits the problem domain best. While these control combinators can
be programmed by AI engineers, the system should be able to select suitable
control combinators of its own.

The Role of the Convergence Gap

Controlling combinators can be prepared to act on certain specific
observations, identifying the relevant skills. The Convergence Gap is the
numerical distance measure that specifies how good a skill had been learned.
The problem is how to assess the responses of the AI engines with suitable
references. This means setting the goal for the intelligent systemwhat to learn.
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Figure 1: Deep learning for a skill with four features.

Figure 1 describes the principle of deep learning for an artificial neural
network. From the training set, a functional process provides an input vector
to the AI engine, and the output vector must be translated in terms of the
required features.

The problem, as ever, is to define the goal. Sometimes, it is relatively easy,
for instance when the goal is making customers happy. The needs of the
customer can be assessed using standard methods from Quality Function
Deployment (QFD) (Fehlmann & Mazur, 2016). For the violinist, and for
most cyber-physical systems, getting it right is not so easily measurable.
Sure, you need a reference, but when does the violin sound like its master
reference? People have not a spectrometer built into their ears, they rather
learn recognizing good musical sound from experience and exposure.

Therefore, it is better to start with easy cases and then increase the
difficulty. For example, a robot learning to manipulate physical objects
may have a convergence gap measured in mechanical precision. Or an
autonomous car that learned driving in San Francisco can adapt to the way
traffic flows in Split, Naples, Palermo, or even Delhi (Gent, 2024).

Empirical Methods for Programming Intelligent Systems

What otherwise can become utterly expensive – collecting and using training
data for many individual settings – can therefore be left to an intelligent
system that incorporates the necessary functional processes for training skills.
These functional processes implement the controlling combinator needed for
a specific skill.

The program scheme we use for the controlling combinator depends on
four functional processes:

• The skills definition – i.e., how do we identify the skills that we want to
improve
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• The vector prompt – i.e., the vector furnished to the neural network to
stimulate a response

• The convergence gap – i.e., the measurable variation between skill goals
and skills achieved

• The nodes’ weights adjustment – i.e., the deep learning strategy to improve
the AI response

These functional processes depend on two parameters: the skill definition,
which includes the convergence gap definition that must be provided
externally. Then the intelligent system can do the fine-tuning autonomously
by gaining control over certain capabilities. It needs feedback from attractors
in the external world, and these attractors consist of the functional processes
needed to compute the convergence gap and feed the result back to the AI
engine for improvement.

Figure 2: Empirical methods for programming intelligent systems.

Thus, intelligent systems are a joint venture between AI engines and
traditional functional processes.

Future Tasks

Hybrid AI-enabled systems that implement concepts, i.e., traditional
programs that operate artificial neural networks, are commonplace. Closing
the loop within intelligent systems instead of traditional deep learning by AI
engineers is the new challenge. Because of their layered architecture, artificial
neural networks cannot implement control combinators, except loop-free
ones. But loop-free is not interesting with respect to real intelligence in the
sense of νoυσ . The ability to learn from feedback is a characteristic of life
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on Earth. It is possible, though not easy, to build intelligent systems with this
capability.

We have prepared a number of sample cases for intelligent systems that
can be freely used and inspected by interested parties. (Fehlmann, 2024).

CONCLUSION

What exactly does “intelligent”mean?We cannot be sure that we havemet all
the criteria that the gods, according to Homer, used to consider an android
robot to be νoυσ . But we have added at least one sign of intelligence, namely
the ability to learn adaptive behavior and new skills, to fine-tune the internal
workings of the intelligent system, almost autonomously. To do this, we
looked at relatively old concepts from theoretical computer science.

It may be that this is not only an advantage when trying to understand
and use older concepts, even if they were not very successful in their time.
The Perceptron of 1943 was a great vision, but far beyond the technical
limitations of its time. The power of the graph model of combinatorial logic,
on the other hand, is something to be explored further.
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