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ABSTRACT

Human pose estimation (HPE) is an essential computer vision task that plays
a significant role in ergonomics, human-centered design of workplaces, and
collaborative robotics, particularly in providing a safe, adaptive, and valuable human-
robot collaboration (HRC). Nevertheless, the need for a concise and practical approach
to setting up a multicamera and multimodal system for HPE dataset generation
remains an open issue in the literature. The main goal of this work is to describe
in concise steps a protocol that serves as a guide in the exploratory stage of the
approach to construct an extensive multicamera and multimodal dataset used to
enhance HRC. In this paper, the proposed protocol specifically addresses the challenge
of designing a biomechanical model that can consistently reproduce complex and
variable human motion analyses in an assembly task while considering ergonomic
factors. Furthermore, the resulting work led to the definition of a marker set for one
single-person future pipeline involving the placement of thirty-two reflective markers
for 3D motion analysis, specifically emphasizing the upper segments of the human
body. The future generation of this dataset will hold significant promise for advancing
the study of HRC. It will introduce reliable and precise multimodal data collection, such
as human kinematics and video data, including depth data, which will then be used
for posture metrics analysis. Finally, the dataset will be a valuable resource for the
research community, enabling the training of machine learning models. These models
will empower collaborative robots (cobots) to learn from human demonstrations,
enhancing their efficiency and ergonomic performance in assembly tasks.

Keywords: Human pose estimation dataset, Human-robot collaboration, Human-centered
design, Ergonomics

INTRODUCTION

Industry 4.0 marked the beginning of a new era of manufacturing that utilizes
digital technologies, including cobots, to create production setups that are
both efficient and flexible (Colim et al., 2021a; Demir et al., 2019). However,
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the focus on system-centered design in Industry 4.0 sometimes reduces
human workers’ significance, prioritizing automation over human-centered
approaches (Cunha et al., 2020; Lu et al., 2022). Hence, the paradigm of
Industry 5.0 originated and developed to highlight the significance of human
well-being and environmental sustainability in industrial operations (Breque
et al., 2021).

In the Industry 5.0 domain, robots are perceived as ideal coworkers,
capable of collaborating with human workers to accomplish shared
objectives to achieve common goals (Cunha et al., 2020). However, the
cobots’ capacity to autonomously improve workers’ physical and cognitive
well-being during collaboration is restricted because current methods
frequently regard ergonomic criteria as an outcome rather than an input to
cobot controllers (Gualtieri et al., 2021). Human-robot collaboration (HRC)
in manufacturing tasks is becoming more widely recognized as an automated
solution for developing more ergonomic workstations (Colim et al., 2021b;
Olivas-Padilla et al., 2022). However, the cobot’s capacity to autonomously
improve workers’ physical and cognitive well-being during collaboration is
restricted because current methods frequently treat ergonomic criteria as an
outcome rather than an input to robot controllers (Gualtieri et al., 2021).

Work-related musculoskeletal disorders (WMSD) continue to be a major
issue in industrial manufacturing, frequently caused by repetitive handling
tasks and awkward postures at the workstations (Chen et al., 2018;
Colim et al., 2023). A solid understanding of human movements and
postures is necessary to address these issues, especially in tasks involving
cobots and humans. Cardoso et al. (2021) emphasized the significance
of including ergonomic requirements in designing cobots workstations to
ensure safety and efficiency. The high occurrence of WMSD highlights the
need for implementing ergonomic interventions and designing collaborative
workstations that focus on human well-being. To overcome these difficulties,
sophisticated human pose estimation methods, and extensive datasets are
essential. These resources are vital for advancing more intelligent and
adaptable HRC systems.

Recent progress in human pose estimation (HPE) has demonstrated
encouraging outcomes in many fields, such as robotics and computer
vision (Toshpulatov et al., 2022). However, there is a notable gap in
the existence and accessibility of datasets designed to improve HRC in
industrial environments, especially those that include ergonomic factors
and multi-modal data. For instance, Yang et al. (2018) demonstrated the
advantages of integrating multiple camera views with depth data and motion
capture systems. Robinson et al. (2023) conducted an extensive survey of
robotic vision for human-robot coworkers within the framework of HRC.
Their research highlighted the need for precise human pose assessment in
facilitating effective collaboration. Additionally, the authors indicated the
necessity for more tailored datasets in industrial environments. Maurice et al.
(2019) introduced a dataset designed for cobots in industry environments.
The dataset primarily emphasizes human movement and ergonomics.
Although their work provided useful insights, it failed to comprehensively
address the intricacies of collecting multi-modal data for the difficulties
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associated with assembly tasks. Angleraud et al. (2024) investigated
the use of sensor-based human-robot collaboration in industrial tasks,
emphasizing the advantages of employing multi-modal sensing methods.
Nevertheless, their research did not offer a thorough set of guidelines
for creating datasets integrating both posture assessment and ergonomic
factors. Cimolin et al. (2012) introduced a marker set methodology for
quantitatively analyzing upper limb movements during gait. Although their
research provided the groundwork for analyzing upper body motion, it
did not specifically consider the need for HRC in industrial environments.
Hansen et al. (2024) confirmed the accuracy of upper extremity motions
by utilizing markerless motion capture, highlighting the capabilities of
innovative technologies in investigating human motion. Nevertheless, their
methodology failed to consider the distinct requirements of HRC or the
incorporation of multiple data modalities. Fernandes et al. (2016) performed
a study in the field of biomechanical modeling. They examined the three-
dimensional multi-segmental trunk kinematics and kinetics during gait. The
study aimed to gain insights into the reproducibility of test-retest results
and the most minor detectable change. Although this work provides critical
methodological considerations, it does not mainly handle the issues of HRC
in industrial contexts.

Despite these advancements, there is still a notable lack of complete
methods for creating multi-modal datasets explicitly intended to improve
HRC in industrial environments. Current methodologies frequently fail to
address the complex connection between HPE, ergonomic factors, and the
specific requirements for assembly activities in collaborative settings. To
fill this gap, this paper presents a procedure summarizing the necessary
steps to generate a dataset that focuses on constructing a multicamera
and multimodal for 3D skeleton-based pose estimation, improving HRC.
The method introduced focuses in a particular way on the difficulty of
creating a biomechanical model that can accurately replicate complex
and diverse human motion analyses during assembly activities while
considering ergonomic variables.

The proposed protocol includes the definition of a marker set for
a single-person pipeline, which requires the placement of thirty-two
reflective markers for 3D motion analysis. This marker set focuses on the
upper segments of the human body, which are crucial for most assembly tasks
in industrial settings. Subsequent sections will explain the presented protocol,
including a concise description of the procedures for setting up a multicamera
and multimodal acquisition vision system, data collection, processing, and
organization of data recording, defining the marker set, and constructing the
biomechanical model.

PROTOCOL TO GENERATE A MULTICAMERA DATASET TO APPLY IN
HRC WORKSTATIONS

This section presents a strategy for generating a dataset that includes several
cameras and multiple data modes for HRC while considering ergonomic
factors for the upper body. This protocol contains several phases, described
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in a concise guide in the following sections: 1. subjects selection criteria;
2. experimental description of tasks; 3. acquisition setup; 4. data recording
and organization; 5. technical validation; and 6. biomechanical protocol
creation. The protocol also integrates the utilization of diverse RGB-D
cameras, motion capture systems, and associated software applications.

Participants Selection Criteria

The selection criteria for participants should prioritize diversity, including
various age groups, genders, and physical characteristics. This will enable
the collection of a comprehensive range of ergonomic data (Maurice et al.,
2019). All participants must provide informed consent, which should include
a detailed explanation of the data collection procedure and the purpose of
the study (as defended by Gualtieri et al., 2022), respecting the Declaration
of Helsinki. It should be noted that the current study is inserted in a research
project approved by the Committee of Ethics for Research in Social and
Human Sciences of the University of Minho (approval number CEICSH
038/2020).

Task Selection

Tasks should replicate authentic industrial operations, such as assembly,
lifting, and tool handling, that require extensive upper-body movements.
More precisely, in the current study, the assigned duties involve the assembly
of a window by a human and a cobot within an industrial scenario, simulating
a typical assembly workstation.

Acquisition Setup

Hardware and Software Systems
For the Optical Motion Capture System (MoCap), Qualisys, Vicon, and
OptiTrack are examples of high-precision optical motion capture systems.
The Qualisys system employs the Qualisys Track Manager (QTM) software
to record and process data (Qualisys, 2024a). Vicon systems utilize
Vicon Nexus software, while OptiTrack systems employ Motive software
(Fernandes et al., 2016; OptiTrack, 2024; Vicon, 2024).

In this context, the reflective markers should be strategically positioned on
anatomical landmarks of the human upper body to capture precise motion
data accurately (Qualisys, 2024b).

Relatively to RGB-D Cameras, multiple high-definition video cameras,
such as the StereoLabs ZED, Microsoft Kinect, and Intel RealSense,
should be strategically positioned around the workstation to record
various perspectives of the participants’ movements (Newman et al., 2022;
StereoLabs, 2024a; Zhang et al., 2019).

In the current study, RGB-D cameras like the Stereolabs ZED 2i are viable
options due to their high resolutions at considerable frame rates (frames
per second (fps)), of up to 2208x1242 at 15 fps and 1920x1080 at 30 fps,
wide-angle field of view (FOV) of 120o, and robust environmental resistance
(StereoLabs, 2024b).
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Calibration

In this domain, each motion capture camera must be calibrated to correct
lens distortions and to establish the appropriate spatial relationship between
cameras, ensuring precise 3D reconstruction (Franjcic and Wozniak, 2014).
For this stage, it is essential to perform both intrinsic and extrinsic calibration
for each video camera (Zhang et al., 2019).

Data Pre-Processing and Synchronization

The raw motion capture data must be collected from the MoCap system
and processed using noise reduction filters to remove any additional noise
(Menolotto et al., 2020).

Regarding motion capture and video cross-synchronization, various
techniques can synchronize motion capture and video data in space and
time. These methods include hardware synchronization, such as dedicated
sync units, or software-based alignment, which indicates the beginning of
recording on both systems (Qualisys, 2024c, 2024d; Yoon et al., 2021).

Data Records and Data Organization

The raw data should be structured with separate folders for motion capture
and video data. Newman et al. (2022) suggest providing metadata, such
as participant ID, task description, and timestamp. The objective is to
convert unprocessed data into processed data by accurately recognizing and
separating significant attributes, such as joint angles and ergonomic metrics.
To simplify analysis, processed data should be stored in a standardized format
such as CSV or JSON (Lorenzini et al., 2023).

Technical Validation

The dataset should be validated by comparing the acquired data with
specified standards (data acquired from the MoCap system) or benchmarks
(Colyer et al., 2018). For ergonomic assessment, established methods, such as
the Rapid Upper Limb Assessment (RULA) (McAtamney and Corlett, 1993)
and the Rapid Entire Body Assessment (REBA) (Hignett and Ergonomist,
2000), are recommended to assess human postures regarding the captured
movements (Alberto et al., 2018).

Biomechanical Protocol Design and Marker Set Definition

This section presents the biomechanical protocol designed to standardize the
data collection process for the human upper-body, considering the principal
motions and actions to assemble a window.

First, considering the macro-actions to be analyzed in this specific dataset,
such as pointing, hand-approach, grasping type, handover, hand-approach-
me, and screwing, a description of the functional movements and joints in
this particular task is presented in Table 1.

Table 2 presents the protocol for accurately and consistently repeatable
placement of reflective markers on anatomical landmarks in each trial
necessary for generating the dataset. The final configuration of the
personalized marker set comprises thirty-two reflective markers for both the
right and left parts of the human skeleton.
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Table 1. Description of the functional movements (Hecht, 2020; Physiopedia, 2024;
Sukari et al., 2021; Tor, 2001; Zwerus et al., 2019).

Joints Description of the functional movements executed

Shoulder/upper arm Flexion, extension, abduction, adduction, internal
rotation, external rotation.

Elbow/lower arm Flexion, extension, pronation, supination.
Wrist Flexion, extension, radial deviation, ulnar deviation.
Hand Flexion, extension, abduction.
Head/Neck - Cervical Flexion, extension, lateral flexion, rotation.
Trunk - Lumbar Flexion, extension, lateral flexion, rotation.

Table 2. Description of localization parameters of the custom marker set for the upper
body.

Definition Marker label References for localization

Forehead FH (Vicon, 2016)
Back of the head BH (Vicon, 2016)
Jugular notch joint IJ_chest (Wikipedia, 2024)
Acromioclavicular joint AC (Musculoskeletal Key, 2016)
7th cervical vertebra C7 (Athletic Training & Sports

Medicine Center, n.d.)
Anterior superior iliac spine ASIS (Agency for Clinical Innovation,

2015)
Posterior superior iliac spine PSIS (Agency for Clinical Innovation,

2015)
Humerus greater tubercule HGT (Musculoskeletal Key, 2016)
Lateral epicondyle LE (Musculoskeletal Key, 2016)
Medial epicondyle ME (Musculoskeletal Key, 2016)
Radial styloid RS (Musculoskeletal Key, 2016)
Ulnar Styloid US (Musculoskeletal Key, 2016)
Lateral head of metacarpal HL5_hand Located on the most prominent bone

on the little finger side of the hand,
the hand closed.

Medial head of metacarpal HL2_hand Located on the most prominent bone
on the thumb finger side of the hand,
the hand closed.

Tip of the Thumb TF_hand Tip of the Thumb.
Tip of index finger IF_hand Tip of the index finger.
Tip of the little finger LF_hand Tip of the little finger.

The marker set created for this work was based on its ability to provide
detailed and accurate motion data for the key joints in the study. The
configuration of this custom marker is presented in Figure 1 and resulted
from the intersection of selected standard biomechanical models known for
its effectiveness in capturing upper limbs, trunk, and head/neck movements
(Fernandes et al., 2016; HAS Motion, 2024; Qualisys, 2021; Vicon, 2016).
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Figure 1: Configuration of the custom marker set for placement of reflective markers
in anatomical landmarks of the upper body (right and left side of the human skeleton).

CONCLUDING REMARKS AND FUTURE WORK

This work is a substantial step forward in implementing Industry 5.0’s vision,
which focuses on ergonomic factors and human well-being in industrial
settings. The proposed protocol addresses the challenge of developing a
biomechanical model that can accurately replicate complex human motions
during assembly tasks while considering ergonomic factors.

The research designed a comprehensive protocol for creating a
multicamera and multimodal 3D skeleton-based pose estimation dataset
to improve HRC. The protocol includes extensive procedures for selecting
subjects, designing tasks, setting up the acquisition system, collecting
data, preprocessing, calibration, synchronization, data organization, and
technical validation. Additionally, the biomechanical protocol establishes a
standardized approach to data collection for body movements that occur
during assembly tasks. A custom marker set consisting of thirty-two reflective
markers was developed to facilitate the precise 3D motion analysis of the
upper-body.

Future research will concentrate on creating a comprehensive dataset
to record human motions in collaboration with a cobot, utilizing the
protocol that has been developed. This dataset will be used to train and
verify machine learning models to enhance HRC’s efficiency and ergonomic
performance for a particular assembly task: assembling a window. The
resultant dataset will include human kinematics and video data with depth
information, providing precise and consistent multimodal data for posture
metrics analysis.

In summary, this investigation establishes the groundwork for
advancing HRC research by offering an advancement of collaborative robotic
systems that are more adaptive and intelligent in industrial environments.
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