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ABSTRACT

In this paper, we present a novel approach to forecasting perceptual load in
demanding piloting tasks, based on neurophysiological response data. We introduce
a forecasting framework using a multinomial classification model paired with deep
learning sequence-to-sequence models. The study compared the performance of
seven different deep learning models, including GRU, Transformer, and linear models
with a 10s outlook against a statical model benchmark. For analysis and validation
purposes, the dataset was first split into training and testing sets, and the training
set was further used to perform a 5-fold cross validation. The cross-validation results
were used to evaluate generalization in terms of the regression loss used to train the
deep learning models, while the testing set was used to evaluate the classification
performance, including macro and weighted recall, precision and F1 scores. The
prediction time for each model (computational demand) was also analysed for insight
into model viability for real-time perceptual load forecasting.
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INTRODUCTION

Perception, as addressed by Lavie (1995), is a passive process in which
perceptual load determines early or late filtering of stimuli through selective
attention allocation. External stimuli are filtered and then prioritized for
further cognitive processing. Under conditions of high perceptual load,
selection is performed earlier in the perception process. Therefore, more
stimuli are ignored (i.e., not perceived) when the capacity for processing
becomes limited (Lavie et al., 2004). Consequently, to ensure effective pilot
information processing, it may be necessary to monitor perceptual load and
predict high demand to offset premature filtering of task-relevant stimuli.

Piloting tasks pose high demands on perceptual resources, most of which
originate from within the aircraft cockpit and its displays. The consideration
of additional, unexpected outside stimuli, such as weather conditions, further
extends perceptual requirements for pilots. Although the visual modality
accounts for the majority of pilot information perception, recent studies
have shown that increased visual perception can have detrimental effects
on auditory perception (Macdonald & Lavie, 2011). This phenomenon
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is referred to as load-induced inattentional “deafness”, whereby auditory
detection sensitivity is reduced as visual perceptual load increases, even in
instances where an auditory signal is expected (Raveh & Lavie, 2015). As
highlighted by Zhu et al. (2022), inattentional deafness presents significant
challenges for pilots, as the inadvertent blocking of auditory information has
been identified as one of the antecedents of aviation accidents. To this end,
Peng et al. (2022) investigated the effect of perceptual load andwarning signal
modality on pilot warning reaction time. They found a significant interaction
between load and cue type (e.g., auditory, visual, and audiovisual) on mean
reaction time.

Current perceptual load monitoring techniques make use of neurological
and behavioural data as indicators of load. Visual scene complexity
is also used as an estimator. Some research has considered image
complexity as a proxy for perceptual load (Nagle & Lavie, 2020). The
authors used two convolutional neural networks (CNN) with variations
on different architectures (a modified VGG-16 and a modified Inception
V3). Alternatively, Harris et al. (2023) leveraged behavioural measures,
specifically gaze fixation durations, as an indicator of perceptual load
and used a support vector machine (SVM) classifier. Finally, Wang et al.
(2021) used functional near-infrared spectroscopy (fNIRS) data along
with a deep learning CNN-BiGRU-SLA model, including a Bi-Directional
Gated Recurrent Unit (BiGRU) with self-attention and self-supervised label
augmentation (SLA), to predict visual perceptual load.

In this study, we present a novel approach for monitoring perceptual load.
Specifically, we shift from reactive prediction tools to proactive forecasting
techniques. We examine the effectiveness of deep learning sequence-to-
sequence architectures for predicting future changes in perceptual load.
Forecasting models were trained using processed fNIRS features as well
as real-time load predictions from a previously trained, multimodal
classification model. The use of proactive perceptual load monitoring
techniques in piloting tasks can support adaptive cockpit displays and prevent
instances of high perceptual load and inattentional deafness, whichmay cause
errors.

The use of deep learning models for forecasting has recently been an area
of increased interest in several fields, such as stock pricing (Pang et al.,
2020), energy distribution (Zhu et al., 2020), and cognitive load monitoring
(Grimaldi et al., 2024). Traditionally, recurrent neural networks (RNN),
such as gated recurrent units (GRU; Chen et al., 2014) and long short-
term memory (LSTM; Hochreiter & Schmidhuber, 1997), have been adapted
for forecasting tasks, as they preserve and leverage past sequence states
in forecast computations. However, the introduction of Transformers by
Vaswani et al. (2017) sparked the exploration of a new network architecture
and its subsequent adaptations (Zhou et al., 2021; Wu et al., 2021). Recent
debates have raised concerns regarding the effectiveness of Transformers
for forecasting due to inherent permutation-invariance resulting in loss of
temporal information (Zeng et al., 2023). Consequently, there is a need
for forecasting research to make comparison of different networks to better
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identify optimal algorithms that are best suited to handle various data
features.

The goal of this study is two-fold: first, we aim to explore the effectiveness
of several statistical and deep learning forecasting algorithms for perceptual
load forecasting in piloting tasks. Second, we document the forecasting
procedure and provide guidance for future model development in the field.
To these ends, we trained eight unique forecasting models based on predicted
perceptual load from a pre-trained multinomial classification model along
with fNIRS data. Our hypotheses on the models were as follows:

Hypothesis 1 (H1): Deep learning, sequence-to-sequence models
will effectively capture meaningful fNIRS features and predicted load
relationships as means of forecasting perceptual load, relative to a statistical
benchmark model.

Hypothesis 2 (H2): The deficiency of Transformers in partial loss of
temporal relationships will hinder model performance as compared with
other deep learning models.

METHODOLOGY

A flight simulator experiment was conducted with seven participants
(all males between the ages of 24–60), with varying degrees of piloting
experience. No participant had direct experience with the (simulator)
aircraft, the UH-60V Blackhawk. Participants were briefed on the experiment
objectives and risks before providing consent. Subsequently, documentation
on the flight protocol was provided and participants were directed to the
helicopter cockpit simulator. In the cockpit, participants had access to five
interactive systems, including: twomulti-function displays (MFDs), a mission
system control unit (MSCU), a control display unit (CDU), and a primary
flight display (PFD). Participants also donned an fNIRS 2000 S full head
forehead band with 16 optode sensors (fNIR Devices LLC).

The experiment produced a total of 46 complete trials absent of
abnormalities. Each trial included two phases: a pre-flight and a flight
phase. The latter consisted of three sub-phases, including climb, enroute and
approach. Participants had to complete a series of checks during the pre-
flight phase, and under normal conditions were allowed to complete these at
their own pace. The participants assumed the role of co-pilot flying (PF) and a
confederate played the role of a pilot (not flying; PNF). Information regarding
flight progress and aircraft parameters were communicated between the PF
and PNF during test trials. The PF was tasked with completing the pre-
flight procedure, which was outlined in the protocol documents and could be
consulted during the experiment. Additionally, the PF was solely responsible
for executing emergency procedures during the flight phase, which were also
outlined in the flight protocol documentation. Each trial, except for the first,
included variations on different emergency events, such as degraded control
displays, fuel pressure warnings, weather events, and reduced pre-flight time.
After each flight, participants were allowed to request a break.

All fNIRS signals were measured with a 10Hz sampling rate and captured
raw light intensities from the prefrontal cortex. Wavelet coefficients were
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determined from the data time series and then the light intensities were
motion-corrected using an α threshold of 0.1 and a Daubechies 5 wavelet
filter. The signal was then passed through a low-pass filter (0.12 Hz
cutoff) to remove additional physiological artifacts before transforming
the data into optical densities using the baseline data collected during
calibration. Oxygenated (HbO2) and deoxygenated (Hb) hemoglobin levels
were obtained after light intensities were converted to chromophores using
the modified Beer-Lambert law (Ayaz et al., 2012). These were then leveraged
to obtain oxygen levels (Oxy) and percent change in blood volume (HbT).
This process was applied for each of the 16 dual-wavelength optodes, yielding
a total of 64 features (McKendrick et al., 2019).

The perceptual load of an instrument flight rules (IFR) task was
manipulated by using gaussian blurring and desaturation of critical cues
(letters, shapes and colors) to affect cue discriminability. Pilot attention and
memory loads were held low and fixed during the task. These manipulations
provided a basis for subjective labels of test trials for the training of
the multinomial classification model for perceptual load prediction. Rasch
modeling was used to measure the original labels for perceptual load, taking
into account individual performance curves and factoring in task difficulty;
a similar methodology can be seen in McKendrick et al. (2019).

MODEL IMPLEMENTATION

A total of eight models were developed and tested. They included one
statistical model, one Transformer model, two linear networks, and four
recurrent networks. The statistical model served as a benchmark for the rest
of the deep learning models. Specifically, we use an autoregressive integrated
moving average (ARIMA) approach, adapted from Box et al. (2015), which
has shown utility for a variety of forecasting tasks due to its capability to
leverage past values and errors in the data. However, the model has high
computation costs due to the need for model fitting before each prediction.
This situation hinders real-time application, as these computational delays
are unavoidable. Additionally, ARIMA is particularly strong in short-term
forecasting tasks, but can be less effective in long-term tasks. For the purposes
of this forecasting task, we found that an autoregressive coefficient of four
and a moving average term of three performed the best; since the confidence
of a class will oscillate between 0 and 1, stationarity in the dataset was
assumed.

Opposite to the ARIMA model, the Transformer model has shown strong
performance with long-term forecasting but has recently come under scrutiny
for its handling of temporal information. It is also worth noting that the
iterative predictions made by Transformer models lead to high computation
costs, which are exacerbated for longer sequence predictions. This issue may
compromise real-time application. Figure 1 shows a simplified version of the
Transformer architecture applied in this study.

Based on the transformer model issues, Zeng et al. (2023) proposed two
linear models to better handle temporal features. The first is a decomposition
model, DLinear, that accounts for trends and seasonality in data. A second
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variation is a normalization model, NLinear, that accounts for shifts in the
distribution of data. The DLinear model decomposes initial input into a
moving average component and a residual component before applying an
individual linear layer to each, and then summing the outputs to obtain a
final prediction. The NLinear model, on the other hand, normalizes the input
by subtracting the last timepoint. It then processes the normalized input in a
single linear layer before adding the last timepoint back into the output. Both
architectures are also depicted in Figure 1.

Finally, the recurrent linear models that we tested are variations on a bi-
directional GRU network (Cho et al., 2014). These models have a simpler
architecture than LSTM models which makes them faster for inferencing.
Recurrent networks are adept at handling temporal information due to their
architecture but exhibit poorer performance when attempting to learn longer
sequences. Consequently, we evaluated two variations on the GRU network.
The first model variation included a self-attention module following the GRU
layers and before the linear (prediction) layer. This self-attention procedure
followed the same format as outlined in Wang et al. (2021). In this case, the
last GRU layer’s cell output is treated as the query and the key, and values are
treated as the full final layer output. Compared to the traditional approach,
self-attention mechanisms can leverage the information across all cells at each
sequence point and account for their relevance in the final prediction with
negligible computational costs. The second variation involves incorporating
a 1D convolutional neural layer (CNN; LeCun et al., 1998) prior to the
GRU layers to extract local features in a dataset. In addition, a max pooling
layer is incorporated to increase the robustness of the CNN by supressing
sensitivity to noise in the input. However, this approach comes with a steep
increase in computation costs during inference. The architectures for each
of the model variations can also be seen in Figure 1. Sigmoid activation
functions were applied at the final layer of each network to normalize
outputs between 0 and 1. Additionally, each intermediate linear layer and
convolutional layer included a normalization step and leaky rectified linear
unit activation function (Maas et al., 2013) to improve robustness and
introduce nonlinearity, respectively.

Initially, the perceptual load data from the multinomial classification
model, consisting of three predicted class confidences, was found to be
imbalanced. Specifically, instances of pilot underload represented only 10%
of the total classifications. Meanwhile optimal and overload confidences
encompassed 45% of the total classifications, each. Since pilot perceptual
overload represents a potential safety critical event, the underload and
optimal classification likelihoods were combined to counter the initially
imbalanced dataset while preserving the critical overload perceptual load
label. The fNIRS data, which was used in training the GRU models, was
scaled for each processed sequence using a minmax scaler ranging from -1
to 1. The model input sequence consisted of the last 90s of data, while the
forecast was the next 10s of perceptual load. The input was the confidence
likelihood from the multinomial model for the pilot perceptual overload
class (including fNIRS for GRU models). The complement of the overload
confidence was used to predict the combined underload and optimal (i.e., not



Deep Learning Forecast of Perceptual Load Using fNIRS Data 17

overload) confidence. Past fNIRS data were not used with the linear, ARIMA,
or Transformer models, as this would require additional modifications to the
original models to properly account for these covariates, which falls outside
of the scope of the present study.

During training, the 46 trials of data were split into six testing trials
and 40 training trials. The training trials were further divided into
five cross-validation folds (32/8 train/validation splits) to evaluate the
generalization capabilities of each model. Regression loss metrics for the 5-
fold cross validation step were analysed. In addition, the model classification
performance was evaluated using the six test trials of data. A mean squared
error (MSE) loss was used to train the models alongside an Adam optimizer
(Kingma & Ba, 2014). The MSE loss measure was selected to heavily
penalize predictions that result in large deviations from the original labels and
improve model robustness for identifying large shifts in high load confidence.
A combined loss function, considering both classification and regression
loss, could be incorporated in model training to improve classification
performance, however, the linear models were not capable of providing
constrained outputs (i.e., through an activation function), which limited the
adoption of classification loss functions in this study.

Figure 1: All model architectures. a) NLinear, b) DLinear, c) Transformer, d) base GRU,
e) GRU with CNN, f) GRU with self-attention, g) GRU with CNN and self-attention.
Tensor shapes are shown in green, linear layers are blue, encoder and decoder
modules (for the Transformer) are yellow, GRU layers are grey (with each block
denoting one layer), self-attention modules are red, and the CNN and max pooling
layers are in light and dark orange, respectively.

RESULTS

Two analyses were conducted and reported here, including: (1) the average
model regression loss across the validation datasets (Table 1); and (2) the
model classification performance when applied to the test dataset (Table 2).
The average computation time during inference, for each 10s forecast, is
also reported in Table 1. The cross-validation performance is important to
consider, as it represents model capability to generalize onto unseen data.
It should be noted that the reported regression loss for the ARIMA model
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(Table 1) simply reflects the regression loss across the same trials used for
cross-validation for the deep learning models.

In terms of computational cost, the ARIMA and Transformer models
produced the highest time costs. The ARIMA model has to be fit to the prior
time data for any prediction. The iterative nature of the Transformer model
requires that each future step is computed independently; hence, computation
cost is dependent on the desired forecast length. In this study, we sought
to predict 10s (100 timesteps) in the future. Consequently, the Transformer
model was forced to create 100 predictions sequentially, as each prediction
is iteratively leveraged to compute the next timestep. On the other hand,
the simple architecture from the DLinear and NLinear models resulted in
extremely quick computations. Finally, although the introduction of a CNN
module did increase the computation cost for GRU models, the overall time
cost is marginal.

FromTable 1, it can be seen that the DLinear andNLinear models achieved
the best regression performance across all folds while the Transformer
model produced the worst generalization among all the deep learning
models. Although the ARIMA model produced the worst overall loss for
the validation set. However, this comparison is caveated by the fact that
the ARIMA model does not use the same training methodology and is not
aimed at minimizing an MSE loss function. Moreover, no GRU variation
(i.e., +CNN, +SA, +CNN+SA) outperformed the basic GRU model by
a considerable margin. In terms of classification performance across the
test dataset, the GRU and NLinear models achieved the best results, both
yielding a 0.80 weighted F1 score. The GRU model with self-attention
underperformed when compared to the ARIMA model, resulting in a 0.73
macro F1 score and a 0.77 weighted F1 score.

Table 1. Average MSE loss for 5-fold cross validation, and average computation cost
during inference.

Metric ARIMA DLinear NLinear Transformer GRU GRU+SA GRU+CNN GRU+CNN+SA

MSE Loss 0.0170 0.0139 0.0141 0.0158 0.0146 0.0146 0.0154 0.0145
Time (s) 0.225 4.25e−4 3.40e−4 0.905 0.0615 0.0590 0.0621 0.0605

Table 2. Classification performance for each model across the test dataset.

Metric ARIMA DLinear NLinear Transformer GRU GRU+SA GRU+CNN GRU+CNN+SA

Macro Precision 0.77 0.77 0.78 0.77 0.79 0.80 0.78 0.79
Recall 0.74 0.74 0.76 0.76 0.76 0.73 0.74 0.75
F1 0.75 0.74 0.76 0.76 0.76 0.73 0.74 0.76

Weighted Precision 0.79 0.79 0.80 0.79 0.81 0.80 0.79 0.80
Recall 0.78 0.79 0.80 0.80 0.80 0.78 0.79 0.80
F1 0.78 0.78 0.80 0.79 0.80 0.77 0.78 0.79
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DISCUSSION AND FOLLOW-ON WORK

The evaluation of model performance revealed several interesting findings.
First, the best performing model in terms of regression loss during cross-
validation was the DLinear model, which also produced one of the worst
performances during classification. It was expected that the linear model
capability to effectively predict future class confidences would extend to
the capability to predict changes in classifications. Although regression
performance could translate to classification performance, our results reveal
that it is not a direct relationship. If the end-goal of modeling is to classify
perceptual load, a different approach should be taken in terms of defining
the model objective function. For example, a combined loss function, taking
into account both classification and regression loss during training, could be
applied to leverage continuous, granular observations on the target variable
(i.e., perceptual load classification confidence) and penalize incorrect model
predictions. This could be a weighted sum loss which takes cross-entropy and
MSE loss into account during backpropagation.

A second finding to consider is the high computation cost of the
Transformer model (and potentially other Transformer-based models) when
performing real-time forecasting. The cost is primarily due to the fact that
the perceptual load forecast follows the same timesteps as the original fNIRS
measurement, which was recorded with 10Hz sampling. Hence, the model
is required to perform ten predictions for each second that it attempts to
forecast. A potential solution to this problem could involve changing the
model output timesteps to a fraction of the original fNIRS response sampling
rate. For example, the architecture could be structured to forecast every
10th timestep; thereby, forecasting the confidence value at each second. This
would drastically reduce the iterative demand of the Transformer model
during inference. It is also possible to down-sample the original data as model
input. This would decrease the total number of parameters that each model
has to learn and compute during inference. However, it is possible that when
restricting these input dimensions (limiting available data for model training)
the model performance would decrease. Consequently, achieving a balance
of the number of input data features with model computation time is critical
to real-time forecasting applications with Transformer models.

Referring to H1, although all deep-learning models outperformed the
benchmark statistical (ARIMA) model, in terms of MSE loss, only certain
models produced superior classification performance for the test dataset.
Furthermore, the best deep learning models only marginally outperformed
the benchmark. Although the deep-learning models proved effective for
forecasting perceptual load, future research needs to further investigate the
features of fNIRS and load classification data to leverage the capabilities of
these models.

Counter to our original hypothesis, the GRU models did not achieve
superior performance compared to the NLinear and DLinear models.
This was surprising given the GRU model capability to account for the
multinomial model overload classification confidence as well as the fNIRS
data. It is possible that the relationship between the fNIRS features and
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the load confidence is more complex than what a GRU model is able
to capture. Hence, additional measures could be taken to better account
for these covariates. One interesting approach, for example, would be to
introduce a cross-attention mechanism, where information from the fNIRS
data independently informs the attention scores, which are then applied to
the load confidences.

Referring to H2, among the deep learning models, the Transformer model
produced the worst performance. However, there have been several recent
modifications to the Transformer model for applications to other time series
domains, which could prove useful for forecasting pilot perceptual load, such
as the Autoformer (Wu et al., 2021) and Informer (Li et al., 2021) models.

Lastly, it should be noted that no formal hyperparameter tuning was
conducted in this study. Future studies should conduct a comprehensive
examination of model tuning, for example, a grid search approach for
each model across the cross-validation dataset. This would allow for more
accurate comparisons of the optimal performance of each model. However,
there is also a need to formulate an appropriate loss function that relates
model training penalties to the end-goal of classification accuracy as a basis
for hyperparameter tuning. The loss function should be used to guide the grid
search for optimal model selection. In addition, model performance could
be further boosted with computationally efficient pre-processing techniques,
such as lifting schemes (Sweldends, 1996; Lee & Ko, 2011). These techniques
can enhance the available information from raw input data.

CONCLUSION

Perceptual load forecasting has the potential to increase safe practices in
piloting tasks by supporting monitoring systems that provide proactive cues
to effectively direct pilot perceptions. This study explored a promising subset
of forecasting models for specific flight tasks and highlighted potential
limitations with current forecasting methodologies. Linear models proved
to incur the least computational costs during inference and produced the
lowest regression (MSE) losses during model cross-validation. On the other
hand, GRU andNLinearmodels produced the best classification performance
when evaluated on a test dataset consisting of several different trials of data.
Although several deep learning models proved to be more effective than
a statistical benchmark model, future improvements and variations to the
models, processing techniques, and objective functions are yet to be explored.
Finally, we also identified several future considerations for the development
of effective perceptual load forecasting algorithms.
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