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ABSTRACT

This paper presents a machine learning-based approach aimed at designing an
adaptive robotic gripper capable of distinguishing between hard and soft objects.
Using the CIFAR-100 dataset, we trained a deep learning model based on the ResNet50
architecture to classify objects into these two categories using visual data. Extensive
data augmentation techniques were employed to enhance the robustness of the
model, and the ResNet50 model was fine-tuned for this task. The model achieved a
validation accuracy of 80.25% and demonstrated promising results in differentiating
hard and soft objects, with implications for various applications in industrial and
healthcare settings. Future work will focus on enhancing the robustness and accuracy
of the model by utilizing the ImageNet (ILSVRC subset) dataset, applying ensemble
methods, and addressing current computational limitations.
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INTRODUCTION

Robotic systems are increasingly deployed in dynamic and unstructured
environments where they must interact with a wide variety of objects. The
ability to adaptively manipulate objects based on their physical properties,
such as hardness and softness, is crucial for versatility and effectiveness of
these systems. Traditional robotic grippers often rely on pre-programmed
parameters or specific sensor inputs to determine how an object is to be
grasped. However, these approaches can be limited in their adaptability and
may not perform well in environments where the properties of objects are
not known in advance.

The motivation for this study stems from the need to develop an intelligent
and adaptable gripper system that can autonomously adjust the grip based on
object classification. By leveraging advances in machine learning, specifically
deep learning, we aim to create a gripper that can distinguish between hard
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and soft objects using visual data alone. This approach has the potential to
simplify the design of robotic systems, reduce the need for complex sensor
arrays, and broaden the range of objects that can be manipulated effectively.

The study is useful in a variety of fields where the focus lies on object
handling. In everyday life, we encounter a wide array of objects with varying
degrees of hardness, that require different levels of care and precision during
handling. For example, in manufacturing, an assembly line might deal with
delicate components such as glass or soft materials that demand a gentle
grip, while also handling harder objects such as metal parts that require
a firm grasp. In healthcare, robotic systems assist in surgeries and patient
care, where the ability to delicately manipulate soft tissues and securely hold
surgical instruments is crucial.

This paper presents the development of a deep learning model based on the
ResNet50 architecture, trained on the CIFAR-100 dataset, to classify objects
as either hard or soft. To improve the generalization of the model to new
objects, we employed various data augmentation techniques and fine-tuned
the model for this specific task. The results of this study demonstrate the
potential of using visual data to generate robotic gripping strategies, laying
the groundwork for future developments in this area.

BACKGROUND, VISION AND RELATED WORK

Robotic manipulation has undergone significant advancements over the past
few decades, particularly in the development of adaptive grippers. These
grippers are designed to handle a wide range of objects by adjusting their
grip based on sensory feedback. However, most traditional approaches rely
on tactile sensors, force feedback, or other specialized hardware to detect the
properties of objects and adjust the grip accordingly.

For instance, Calandra et al. (2018) developed a deep learning model
that used tactile data to predict grasp outcomes, enabling a robotic hand to
identify objects and adjust its grip to prevent slippage or excessive forces.
Similarly, the paper “Design and performance characterization of a soft
robot hand with fingertip haptic feedback for teleoperation”, by Li et al.
(2020) focuses on designing and characterizing a soft robotic hand with
fingertip haptic feedback for teleoperation emphasizing real-time tactile
sensing and feedback mechanisms. Although innovative, these studies often
rely on hardware that may not be feasible for all applications, particularly in
scenarios where sensory inputs are restricted or unavailable.

This study differentiates itself by focusing on the use of visual data for
object classification. Visual data offer several advantages over tactile sensors,
including the ability to gather information from a distance, reduced hardware
complexity, and potential for integration with existing computer vision
systems. By training a deep learning model on a large and diverse dataset
such as CIFAR-100, we aim to create a gripper that can adapt to a wide
range of objects without the need for specialized sensors.

The ability of robotic systems to adaptively grip objects without constant
human intervention or extensive reprogramming represents a significant
advancement. By relying on visual data and machine learning algorithms, as
demonstrated in this research, robotic systems can becomemore autonomous
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and versatile, reducing the burden on human operators and improving overall
efficiency. This study provides a scalable solution that can be implemented
across various industries, to enhance the safety, reliability, and effectiveness
of robotic systems in diverse environments.

METHODOLOGY

Data Selection and Preparation - The CIFAR-100 dataset was selected for
this study because of its diversity and the availability of labelled images. The
dataset contains 60,000 color images across 100 object categories, with each
image measuring 32×32 pixels. These categories are manually divided into
two classes: hard objects and soft objects. Hard objects include items such as
rocks, metals, vehicles and tools, whereas soft objects include animals, fruits,
and other organic materials. The list mentioned here is not exhaustive.

To facilitate model training, the dataset was split into training and testing
sets, with 50,000 images used for training and 10,000 images reserved for
testing. The images were normalized to the range of [0, 1] by dividing the
pixel values by 255. This normalization helped accelerate the convergence of
the model during training and improved training and validation accuracy.

Model Architecture - We used the ResNet50 architecture as the backbone
of our model. ResNet50, a deep convolutional neural network (CNN) with
50 layers, is well-known for its ability to handle complex image classification
tasks. It was pre-trained on the ImageNet dataset, providing a robust starting
point for our specific classification task. The pre-trained model was modified
by unfreezing the last 200 layers and, allowing the network to learn features
specific to hard and soft object classification tasks.

Figure 1: Pictorial representation of the architecture of the deep learning model
(Screenshot taken from Jupyter notebook).

This architecture was chosen to balance the model complexity and extract
high-level features from the images, ultimately improving the classification
accuracy.
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Data Augmentation- Data augmentation is a crucial part of this study to
ensure that the model can generalize well to new images. Given the limited
size of the CIFAR-100 dataset, augmentation techniques were employed to
artificially expand the dataset by generating variations of the existing images.
The following augmentation techniques were used.

• Rotation (up to 30◦): To simulate different orientations of objects.
• Width and Height Shifts (up to 30%): To account for objects appearing

at different positions within the image frame.
• Shearing (up to 30%): Mimics the effect of perspective changes.
• Zooming (up to 30%): Simulates objects being viewed from different

distances.
• Horizontal Flipping: To generate mirror images, accounting for symmetry.
• Fill Mode (nearest): Handles new pixel values generated during

transformation.

These augmentations make the model invariant to common
transformations, thus improving its ability to correctly classify objects
in diverse scenarios.

Training Procedure - The model was trained using the AdamW optimizer,
an advanced variant of the traditional Adam optimizer that integrates weight
decay regularization. This feature is particularly beneficial for preventing
overfitting, as it penalizes large weight values, thereby encouraging the model
to learn more generalized and robust features. The initial learning rate was
set to 0.0001, with a weight decay parameter of 0.0001, ensuring a balanced
approach to both learning speed and regularization.

To further refine model training, a learning rate scheduler was
implemented using the ReduceLROnPlateau callback in TensorFlow. This
scheduler dynamically reduces the learning rate by a factor of 0.5 whenever
the validation loss fails to improve after 10 epochs. This mechanism is
crucial for allowing the model to continue learning at a more granular
level as it approaches convergence, thereby premature stagnation during the
training process. In addition, early stopping was used to safeguard against
overfitting. Training was automatically halted if the validation loss did not
improve for 50 consecutive epochs, indicating that the model had reached its
optimal performance on the validation set. This approach not only prevents
unnecessary training but also ensures that the performance of the model on
unseen data is maximized. The model was trained for over 120 epochs with
a batch size of 64, striking a balance between computational efficiency and
model performance. To enhance the generalization capabilities of the model,
a data generator was used to apply on-the-fly data augmentations, such as
rotations, shifts, and flips. This ensured that each epoch was trained on a
slightly different set of images, effectively simulating a more diverse dataset
and further reducing the risk of overfitting.

RESULTS

The performance of the model was evaluated using the test set, which consists
of images not used during training. The results indicate that the model was



Advancing Vision-Based Adaptive Gripping Technology With Machine Learning 1515

able to classify hard and soft objects with a high degree of accuracy, achieving
a validation accuracy of 80.25%. The classification report (Figure 2) provides
additional insights into the performance of the model across the two classes.

Figure 2: Classification report of the program. The screenshot of the code has been
taken from Jupyter notebook.

Figure 3: Precision, recall, and F1 score by class for the machine learning model.

For the soft class, precision, recall, and F1-score were all close to 0.83,
indicating that the model performed well in identifying soft objects, by
optimally balancing between the number of correctly identified positives
(recall) and the correctness of its positive predictions (precision).

For the hard class, the precision, recall, and F1-score were slightly lower,
around 0.75–0.77, showing that the model faces more difficulty correctly
identifying hard objects compared to soft ones.

Finally, the macro average suggests balanced performance across both
classes, with all three metrics (precision, recall, and F1-score) aligning around
0.79–0.80. This supports the observation that the model is not biased
towards any particular class, but has a slightly better performance on soft
objects (Figure 3).

The performance of the trained model was evaluated on the test set.
The results (Figure 4) indicated, a validation accuracy of 80.25% with a
minimum validation loss of 0.4455. The model demonstrated a strong ability
to distinguish between hard and soft objects, as evidenced by its overall
accuracy and classification metrics.
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Figure 4: Screenshot of a part of the epoch score during model training. Minimum
val_loss achieved is 0.4455 at epoch 56 and maximum val_accuracy achieved is 0.8025
at epoch 74.

To gain deeper insights into the model’s performance, a confusion matrix
was plotted (Figure 5). It provided a detailed breakdown of the model’s
predictions against actual labels. The confusion matrix was particularly
useful for understanding the types of errors made by the model, such as
whether it was more prone to falsely classifying hard objects as soft or vice
versa.

The confusion matrix revealed the following results:

• True Positives (TP): The model correctly identified 5235 soft objects,
reflecting high precision for this class.

• True Negatives (TN): 2756 hard objects were correctly classified, showing
that the model was also effective in identifying hard objects.

• False Positives (FP): Approximately 865 soft objects were incorrectly
classified as hard, suggesting that the model occasionally confuses the two
classes when they share similar visual features.

• False Negatives (FN): Around 1144 hard objects were misclassified as soft,
indicating that while the model performed well overall, there was room
for improvement in minimizing these errors.

Figure 5: Confusion matrix of the program duly plotting the predicted and true labels.
The screenshot has been taken from Jupyter notebook.

Overall, the confusion matrix provided critical insights into the strengths
and limitations of the model, highlighting areas where further tuning and
data augmentation could potentially lead to performance improvements.
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The training process showed a steady decrease in both the training and
validation losses, with the best epoch occurring at epoch 74, where the
validation accuracy peaked at 80.25%. This suggests that the model has
learned to generalize well from the training data, although there is still room
for improvement in classifying hard objects.

Figure 6: Training and validation accuracy and loss plotted against the number of
epochs during model training.

Figure 7: Receiver operating characteristic (ROC) curve with an AUC of 0.78.

The Receiver Operating Characteristic (ROC) curve depicted in Figure
7 shows the performance of the machine learning model in distinguishing
between the two classes hard and soft objects. The Area Under Curve (AUC)
is 0.78 which indicates that the model performs fairly when distinguishing
between hard and soft objects using visual data alone, although there remains
scope for further improvement.

DISCUSSIONS

The results of this study demonstrated the effectiveness of using deep learning
models, (herein) ResNet50, to classify objects based on visual data. The
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accuracy and F1-scores obtained suggest that the model is well-suited for
integration into adaptive gripper systemswhere sensory inputs may be limited
or unavailable.

However, this study also highlights certain challenges, particularly in the
classification of hard objects. The lower precision and recall values for the
hard object class suggest that the model may struggle to distinguish between
hard and soft objects when the visual differences are subtle. This could be
due to the smaller number of hard object examples in the training set, as
well as the inherent difficulty of the task resulting from the type of images
encountered by the model during the training process. In some cases the
model might come across very simple images like a metal rod kept on a plain
background but on other instances it might encounter a similar metal rod
being placed on top of a soft toy making the image inherently complex and
the model may confuse itself.

Data augmentation plays a crucial role in improving the robustness of the
model. By simulating real-world variations in the training data, we were able
to train a model that was more resilient to changes in object orientation,
position, and scale. This is important for applications where the objects being
manipulated may vary significantly in appearance.

FUTURE WORK AND LIMITATIONS

Although the current model performed well on the CIFAR-100 dataset, there
are several areas for improvement that will be addressed in future. One of
the most significant steps will be to train and validate the model using the
ImageNet (ILSVRC subset) dataset. This dataset is much larger and more
diverse than CIFAR-100, containing over 1.2 million images across 1000
categories. By increasing the sampling set, overfitting can be reduced and
accuracy of the model can be boosted. Additional diversity in the ImageNet
dataset will also help themodel to learnmore nuanced features that can better
distinguish between hard and soft objects.

In addition to expanding the dataset, we plan to experiment with ensemble
methods to improve the performance of the model further. Ensemble methods
involve training multiple models and combining their predictions to produce
the final output. This approach can often lead to better generalization,
because it reduces the likelihood of any single model’s biases affecting the
final prediction. Techniques, such as bagging, boosting, and stacking will be
explored in future experiments.

Further data augmentation techniques will also be employed to make the
model even more robust. For example, we plan to use techniques such as
CutMix, which combines multiple images to create new training examples,
and MixUp, which blends the pixels of two images to generate new training
examples. These advanced augmentation methods can help the model learn
more complex patterns and improve its ability to generalize to new data.

We tried using ensemble methods to train the model and enhance the
system accuracy. For this purpose, we used ResNet50, InceptionV3 and
Xception as the base model combinations. InceptionV3 and Xception accept
image inputs of size 75 × 75 × 3 pixels or more. However, the current
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limitation of this study is the limited computational power available in our
laboratory. The NVIDIA GeForce GTX TITANXGPU (Compute Capability
5.2) used in this study struggles to handle larger image sizes of 75 × 75 × 3,
leading to memory allocation errors during training. This limitation hindered
our ability to experiment with larger models and more complex architectures,
as evidenced by the error (Figure 8) encountered during training.

Figure 8: Extract from the python terminal. Memory allocation error encountered when
training the deep learning model with ensemble methods involving image sizes of 75
x 75 x 3.

Efforts are underway to secure more powerful computational resources
to facilitate future experiments using larger and more complex datasets.
Upgrading to a more modern GPU with higher memory capacity will allow
us to train larger models, process higher resolution images, and explore more
advanced deep learning techniques. Additionally, the use of cloud computing
resources or high-performance computing (HPC) clusters may be considered
to overcome these limitations.

CONCLUSION

This paper presents a novel approach for adaptive robotic gripping by
leveraging deep learning models trained on visual data to classify objects
based on their hardness or softness. The results obtained from the model
make it a promising candidate for deployment in various industrial and
healthcare applications after due deliberation and further improvement in
research.

The novelty of this research lies in its focus on visual data alone for object
classification in robotic gripping, which contrasts with previous research
that predominantly relied on tactile feedback or specialized hardware.
This approach significantly broadens the applicability of adaptive gripping
technologies to industries where advanced tactile sensors might not be
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available or feasible. The use of standard deep learning techniques, combined
with data augmentation and fine-tuning of pre-trained models, showcases
a method that is both accessible and scalable, offering practical solutions
for real-world applications in manufacturing, healthcare, and beyond. The
proposed methodology not only enhances operational efficiency but also
paves the way for more versatile and human-aware robotic systems. In
addition, this approach can lead to cost savings by reducing the need for
specialized hardware, such as tactile sensors, which are often expensive
and complex to integrate. By utilizing existing visual data and open-source
datasets like CIFAR-100 and ImageNet, the method proposed in this study
offers an affordable and accessible alternative solution to the problem.

Future work will focus on expanding the dataset to include more diverse
examples, employing ensemble methods to improve generalization, and
addressing current computational limitations. The goal is to develop a highly
adaptable gripper system that can handle a wide variety of objects in dynamic
and unstructured environments, ultimately enhancing the capabilities of
robotic systems in both industrial and everyday applications such as
manufacturing, logistics, healthcare, and beyond.
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