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ABSTRACT

The usage of large language models (LLMs) as a generative artificial intelligence
tool is becoming increasingly widespread, yet there is limited understanding of
the mechanisms by which prompts in whole or in part influence their behavior,
capabilities, and limitations. In this paper, the authors conduct a mathematical
and topological analysis of token embeddings – the first step in the computational
workflow of LLMs. This work shows that the subspace where token embeddings
lie is a stratified manifold with varying local dimension, and in those cases where
semantically related tokens are co-located on a submanifold, there are non-trivial
implications for model behavior. These topological and geometric findings help to
explain performance aspects of different LLMs such as why the Llemma model is more
likely to overfit than the GPT-2 model, yet the latter does worse at mathematical queries
than the former. To the best of the authors’ knowledge, this paper is among the first
to conduct such research into the topological characterization of the token embedding
space and analyze LLM behavior starting from first principles.
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INTRODUCTION

As people increasingly rely on large language models (LLMs) to inform and
enrich key business workflows, it is critical that users and consumers of
generative output understand the use cases for which LLMs are appropriate
and the conditions under which they can be reasonably expected to be
performant. Despite continuing advances in model development (Minaee,
2024), there is little mechanistic understanding of when and why LLMs
perform well, or the conditions under which they do not. The internal
structure and dynamics of most LLMs are difficult to examine and interpret,
either because the models are proprietary (OpenAI, 2023) or because such an
analysis would be computationally prohibitive due to the model’s complexity
(NVIDIA, 2024). Absent a clear understanding of when, why, and how these
models should be used, users (and consumers) of LLMs are being asked to
trust the outputs of a technology that is essentially a ‘black box.’

The aim of this research is to unbox these black boxes by understanding
how they work mathematically. To that end, this paper presents a
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low-cost mathematical analysis of pre-trained LLMs, and connects estimated
topological and geometric properties to model behaviors. The process of
using a pre-trained model for text generation starts by providing to it a textual
prompt, which is parsed into tokens and consequently the corresponding
token embeddings are processed by the model to generate output text.
Therefore, in order to develop a foundational, first principles understanding
of the behavior, capabilities, and limitations of LLMs, it is crucial to
understand the structure and topology of the token subspace. This is what
this work aims to do. Concretely, contributions of this paper are as follows:

• Token embeddings are visualized and it is illustrated how syntactically
and semantically related tokens such as numbers and capitalized words
may form their own distinct clusters. This shows how pre-trained LLMs
learn to differentiate between different types of tokens at the level of token
embeddings.

• The dimensionality of the token subspace is estimated and it is shown that
it is not a manifold, instead it is a stratified manifold.

• The dimension of the token subspace is found to be significantly lower
than the latent space dimension, which explains why some models exhibit
overfitting behavior.

• Manifold properties are used to explain why some models perform better
at mathematical queries than others.

BACKGROUND

This work is at its core a multidisciplinary endeavor which spans topological
analysis and generative artificial intelligence. It is thus important to provide a
common conceptual framework and associated definitions to introduce and
motivate the analysis.

Each LLM has an associated vocabulary which contains strings of
characters known as tokens. Tokens – which can be whole words, sub-
words, numbers or symbols – are obtained through a process known as byte
pair encoding of a training corpus (Sennrich, 2016). Commonly used LLMs
typically have tens of thousands of such tokens in their vocabulary; and this
quantity will be denoted as the vocabulary size V. Each token has a token
embedding associated with it, which is a vector that lives in an E-dimensional
latent space. The values of the E components, or weights, of each of the V
token embedding vectors are optimized during the training phase of an LLM,
then frozen when the model is used in inference mode for text generation.
However, not every point in this latent space is linguistically meaningful; only
a subspace of it, denoted as the token subspace, contains the pre-trained token
embeddings of the learned vocabulary.

The E-dimensional latent space of large language models is usually
ascribed the Euclidean metric, which induces a topology on both the latent
space and the token subspace. The number of free parameters needed
to locate a point within a general topological space is one of its most
fundamental intrinsic properties – this is the dimension. A space for which the
dimension cannot change abruptly without leaving the space is a manifold;
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on the other hand, a space which can be decomposed into pieces (strata) with
different dimensions is a stratified manifold.

The findings in this paper are the results of experimentation on two
open source LLMs, which are tuned for slightly different purposes, feature
different vocabularies, and also vary in their latent dimensions. These models
are described below:

• GPT-2 (Radford, 2019) is a general purpose LLM for text generation. It
has around 125 million trainable parameters, and is not optimized for any
specific application. Its vocabulary size is V = 50257, and latent space
dimension is E = 768.

• Llemma-7B is a much larger model containing around 7 billion trainable
parameters. As per its authors (Azerbayev, 2023), the Llemma-7B model
is optimized for mathematics. The authors of this paper also noticed via
experimentation that the Llemma-7B model performed significantly better
than the GPT-2 model in answering mathematical queries. Its vocabulary
size is V = 32016, and latent space dimension is E = 4096.

The authors have performed experiments on several other LLMs such as
Mistral-7B (Jiang, 2023); however, the details and results are excluded from
this paper due to brevity considerations. Note that the results on GPT-2 and
Llemma-7B that are presented in this paper offer a good representation of
the research conducted at the time of writing.

VISUALIZING TOKEN EMBEDDINGS AND CLUSTERING

As mentioned in the previous section, all the V token embeddings of an
LLM lie in an E-dimensional latent space. As a first step in the analysis,
dimensionality reduction techniques are used to reduce the token embedding
vectors to two dimensions (2D), which is suitable for visualization. As
recommended in (van der Maaten, 2008), principal component analysis
(PCA) is first used to reduce the dimension down to 50, then t-distributed
stochastic neighbor embedding (t-SNE) is used with perplexity set to 40 to
reduce the dimension down to two. The values 50 and 40 were chosen using
a brief hyperparameter search procedure; see (Dey, 2020) for a more detailed
analysis of hyperparameter search in deep learning. Note that t-SNE is a
stochastic algorithm and so applying it on given data will not produce exactly
reproducible results, however, the results were observed to be qualitatively
similar across multiple runs.

Figure 1 shows a 2D visualization of all 50,257 token embeddings in
GPT-2’s vocabulary. While most of the tokens are part of a large, visually
undifferentiated cluster, there are some smaller clusters that are separated.
These segregated clusters correspond to specific token types as shown in
Figure 1, suggesting that during its training phase an LLM is learning very
different representations of specific kinds of semantically or syntactically
related tokens. In particular, note that the cluster towards the right contains
exclusively numeric tokens, indicating that the learned representation of
numbers in the model, in terms of the components of token embedding
vectors, is quite different from that of non-numeric characters.
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Figure 1: Visualizing GPT-2 token embeddings in 2D, with some clusters of specific
token types annotated with black boundaries.

Figure 2 investigates these clusters of semantically related tokens more
closely by highlighting all the numeric tokens in GPT-2’s vocabulary in purple.
Numeric tokens are defined to comprise a) tokens made up of only numeric
characters (including superscripts, subscripts, and hexadecimal ASCII codes
for numbers), e.g., ‘354’, or b) numeric characters preceded by space, e.g.,
‘Ġ354’, where ‘Ġ’ is a special character GPT-2 uses in its vocabulary to denote
a leading space. There are 1694 such numeric tokens in the vocabulary. As
seen in Figure 2, the vast majority of numeric tokens are in the ‘archipelago’
cluster towards the right.

Figure 2: Visualizing GPT-2 token embeddings in 2D, with numeric tokens in purple.
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Figure 3: Visualizing Llemma-7B token embeddings in 2D, with some clusters of
specific token types annotated with black boundaries.

Figure 3 is the corresponding plot to Figure 1 for the Llemma-7B LLM.
This has 32,016 tokens overall, and several segregated clusters are again
visible for specific types of tokens such as capitalized tokens, special symbols,
or non-English characters. However, there is no separate cluster for numeric
tokens. The vocabulary for Llemma-7B only has 44 numeric tokens, which
are shown colored purple in Figure 4. With significantly fewer numeric
tokens that are not clustered together, it is notable that Llemma-7B is
designed for and achieves better performance against mathematical queries
than GPT-2. The next section further explores the relationship between
topological and geometric properties of the token subspace and model
behavior.

Figure 4: Visualizing Llemma-7B token embeddings in 2D, with numeric tokens in
purple.
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TOPOLOGICAL ANALYSIS OF THE TOKEN SUBSPACE

Estimating Dimension

As noted above, one of the most fundamental properties of the token
subspace is its dimension. Because the dimensionality of the token subspace is
not directly observable, the first key objective is to estimate this quantity. To
do so, because the token subspace of an LLM is comprised of the embeddings
of individual tokens in its vocabulary, the authors propose the following
method of estimating the local dimension at different tokens to yield a
distribution of local dimensionality.

In the token subspace, the volume v of a ball of radius r, in the limit of
small r, is (Gray, 1974, Yomden, 2004):

v = Krn
(

1−
1

6 (n + 2)
Ric r2 + O

(
r4
))

(1)

where n is the dimension of the token subspace, Ric is the Ricci scalar
curvature, and K is the constant of proportionality. Taking the natural
logarithm of both sides of the above equation yields the following asymptotic
series for small r:

log v = logK + n log r−
1

6 (n + 2)
Ric r2 + O

(
r4
)

(2)

From here, the dimension n (and also logK and Ric) can be solved via a
linear regression against pairs of radius-vs-volume values. To do so, volume
needs to be estimated first. In particular, the volume of the portion of the
token subspace surrounding any token is of interest. This can be done using
a Monte Carlo estimation, according to which the volume v of a ball of radius
r centered at token j is proportional to the number of tokens within a distance
r to j. Letting N (·) denote cardinality of a set, this becomes:

v
(
r, j
)
≈MN
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i :
∥∥i− j∥∥ ≤ r

})
(3)

where M is the constant of proportionality, and ‖·‖ is a distance metric.
As a point of clarification, note that for the purposes of volume and
local dimension calculation, the distances considered are in the original
E-dimensional space of token embeddings, not the t-SNE reduced 2D values.

Since there are V (vocabulary size) tokens in total, for a given token j,
a sequence r1,j < r2,j < · · · < rV,j of distances to the other tokens can be
obtained such that v

(
rk,j; j

)
≈ Mk. The set of ri,j values can be arranged

in a matrix, in which rows are denoted as i and columns as j. Notice that
each column of the ri,j matrix is sorted in ascending order. Since the sequence
of volumes corresponding to each token (column) is the same, namely the
sequence of integers from 1 to V, the log-linear portion of Equation (2) can
be rewritten as a matrix equation for token j:
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This can be readily solved via the least squares regression to obtain an
estimate for the dimension nj.

Log–log curves of volume vs radius of a ball centered at particular tokens
within the token subspace are subsequently shown. The slope of any such
curve, which may or may not be constant, is the local dimension at that
token.

Table 1 shows the computed local dimension at all tokens present in the
token subspace of the GPT-2 and Llemma-7B models. The tokens are split
according to their type – either numeric or non-numeric, where the numeric
tokens are as described in the previous section and shown in Figures 2 and
4 for GPT-2 and Llemma-7B, respectively. For each token type, Table 1 lists
the quartile values of the calculated local dimension.

Table 1. Quartile values for local dimension at different token types for different LLMs.

Model Token Type Number of Tokens Dimension

Q1 Q2 Q3

GPT-2 Non-numeric 48563 384 498 566
Numeric 1694 10.7 15.8 22.1

Llemma-7B Non-numeric 31972 9.44 10.5 11.2
Numeric 44 4.92 6.84 9.07

If the local dimensionality of the token subspace were constant throughout,
it can be concluded that the token subspace is a manifold. However, the
key conclusion to be drawn from Table 1 is that the local dimension is not
constant across the token subspace for either LLM. Thus, the authors posit
that the token subspace is not a manifold, instead it is a stratified manifold.
Deeper analyses for each model are presented in the following subsections.

Analysis of GPT-2 Results

Figure 5a plots volume vs radius for a few sample tokens in GPT-2. Notice
that the plots have a few different slope values, i.e., there are ‘knees’ between
straight segments that are prominently visible. This is evidence of the token
subspace being a stratified manifold. The points where slope changes are
marked as the stratification boundaries.

Figure 5b plots histograms of estimated local dimensions for GPT-2. For
non-numeric tokens, the histogram appears to be bimodal with some tokens
having low dimension close to zero while most others have dimension around
400-600. In contrast, the numeric tokens in GPT-2 have significantly lower
dimension than non-numeric tokens. This is also evidenced by Figure 2 where
it is shown that numeric tokens form their own cluster, i.e., they have fewer
neighbors, which leads to lower dimension (although note as a word of
caution that Figure 2 was plotted for the t-SNE reduced 2D embeddings while
the dimensional analysis in this section is done in the original E-dimensional
space).
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Figure 5: (a, Left): Volume vs radius for several tokens in GPT-2: # (red), $
(blue), ¢(green). Visible stratification boundaries are marked with arrows. (b, right):
Histogram of estimated local dimensions for GPT-2 for non-numeric tokens and
numeric tokens.

In addition to the overall lower dimensionality, it is found that the numeric
tokens are confined to a constant dimension submanifold, thereby limiting
the expressivity of any continuous dynamic map – such as the transformer
layers (Vaswani, 2017) of the GPT-2 LLM – that act upon them. Note that the
dynamic map induced by a transformer is continuous – a result which follows
from the continuity of the activation functions in a deep neural network
(Hendrycks, 2016). This implies that any set of numeric tokens that are near
each other will tend to be taken to other tokens that are also near each other.
Briefly, the topology of the token subspace suggests that GPT-2 will tend to
treat all numeric tokens as interchangeable because they are co-located on
a submanifold. Of course, mathematics requires that numeric tokens have
distinct meanings, and they are definitely not interchangeable! Therefore, it
can be immediately hypothesized, simply from the finding that the numeric
token subspace is a (largely connected) manifold, that GPT-2 will be a poor
performer on mathematical queries.

Analysis of Llemma-7B Results and Comparison to GPT-2

The Llemma-7B token subspace is also a stratified manifold, however,
obtaining this conclusion is a bit more subtle than in GPT-2. Figure 6
shows the local dimension of different tokens in the t-SNE visualization.
Slicing this figure along the value of 3 on the x-axis yields violin plots for
the dimensionality of different tokens as the y-axis varies. None of these
dimensions are constant, which is evidence of stratification.
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Figure 6: Estimated local dimension for Llemma-7B tokens, plotted using t-SNE
reduced 2D token embeddings on the right. Dimension is indicated by the depth of
color; darker points have lower local dimension. Dimension of individual tokens along
X1=3 is shown on the left.

The bigger finding from the computed local dimensions for Llemma-7B
is how low their values are. As seen in Table 1, most tokens have local
dimension less than 10. This has implications for overfitting, which occurs
whenever the dimension of the latent space (E) exceeds what is necessary
to capture the structure of the token subspace. According to the Whitney
embedding theorem (Lee, 2003), if the token subspace dimension is less than
half of E, overfitting may occur. For Llemma-7B, the value of E is 4096,
which is orders of magnitude bigger than twice the local dimension of any
token. This is evidence of overfitting in Llemma-7B. Moreover, the excess
dimension present in Llemma-7B’s latent space is potentially wasteful. Such
issues are not present in GPT-2, where most tokens have a local dimension
that exceeds half the latent space dimension of 768.

Note that Llemma-7B has far fewer numeric tokens than GPT-2, and
they are not near each other in the token subspace. Therefore, Llemma-7B
can distinguish between numeric tokens and is not hampered like GPT-
2 is when responding to mathematical queries. This plays a key role in
Llemma-7B’s superior mathematical performance. As validation, the authors
of this paper conducted experiments where both GPT-2 and Llemma-7B were
fed >160,000 mathematical queries of varying difficulty, and Llemma-7B
correctly answered 5 times as many queries as GPT-2.

CONCLUSION

This paper presents a mathematical and topological analysis of large language
models (LLMs) focused on their token embedding space, the geometry of
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which constrains the model’s inferential behavior. In particular, the token
embedding spaces of different LLMs have varying local dimension, i.e., they
are stratified manifolds. Exploring this space and visualizing it shows how,
in some cases, clusters of semantically and syntactically related tokens such
as numbers are co-located on submanifolds. In particular, the GPT-2 LLM
has more than a thousand numeric tokens clustered together in a largely
connected manifold that is distinct from the manifolds containing non-
numeric tokens. Mathematical queries which demand the model fluently
generate across numeric and non-numeric strata consequently yield poor
performance. In contrast, the Llemma-7B LLM has less than 50 numeric
tokens, but they are not clustered together, a geometry with corresponding
superior mathematical performance. However, the local dimension of tokens
in Llemma-7B is orders of magnitude lower than the dimension of the latent
space, an indication of overfitting and limited generalizability.

The goal of this research is to explain the behavior, capabilities, and
limitations of LLMs using a foundational, first principles approach by
starting from their internal structure. This paper contains initial findings
from ongoing research in this domain. Future work will involve continued
experimentation on both foundational and fine-tuned models of different
sizes, consideration of position embeddings, and extensions from tokens to
token sequences and associated semantics.
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