
Human Factors in Design, Engineering, and Computing, Vol. 159, 2024, 172–181

https://doi.org/10.54941/ahfe1005580

Comparison of AI Model Serving
Efficiency: Response Time and Memory
Usage Analysis
Ji-Yeon Kim1, Seong-Hyeon Jo1, Sang-Hyun Ha2, Ki-Hwan Kim2,
Young-Jin Kang2, and Seok Chan Jeong1,2,3

1Department of Artificial Intelligence, Dong-Eui University, Busan, 47340, South Korea
2AI Grand ICT Research Center, Dong-Eui University, Busan, 47340, South Korea
3Department of e-Business, Dong-Eui University, Busan, 47340, South Korea

ABSTRACT

NLP (Natural Language Processing) models are in increasing demand, making the
research into effective serving methods crucial. Particularly, cost efficiency and rapid
response times are key factors in the serving process of NLP models. This paper
compares various methods for optimizing the serving of NLP models. Three serving
methods were applied using REST API, TensorFlow Serving, and TensorFlow.js, and
each method’s response speed and memory usage were evaluated. This research is
thought to provide foundational guidelines for enhancing the efficiency of serving NLP
models, aiming to minimize potential issues in the serving process and improve user
experience through such studies.

Keywords: Tensorflow serving, Tensorflow.js, Nodejs, LSTM, GRU

INTRODUCTION

Since 2019, large language models (LLMs) like GPT have gained significant
attention in the field of natural language processing (NLP), with services
utilizing these models experiencing rapid growth. Language model services
simplify the process of querying and receiving responses through text,
providing convenience and being applied across various applications, with
some services reaching millions of daily users. Alongside this rapid growth,
the importance of serving large language models quickly and reliably is also
increasing.

Large language models tend to perform better as they increase in size,
but they also require significant computational resources and memory. This
has become a major factor in slowing response times and increasing costs
during the serving process, especially in environments that require real-time
responses.

Wang et al. (2024) found that inference within web browsers is
considerably slower compared to native environments. In-browser inference
demands significant memory, sometimes requiring up to 334.6 times more
memory than the deep learning models themselves, increasing the rendering
time of GUI components by an average of 67.2% and significantly degrading
the overall user experience.

© 2024. Published by AHFE Open Access. All rights reserved. 172

https://doi.org/10.54941/ahfe1005580


Comparison of AI Model Serving Efficiency: Response Time and Memory Usage Analysis 173

Jia et al. (2024) proposed an in-browser inference system called nnJIT for
enhancing deep learning inference on edge devices through Just-in-Time (JIT)
kernel optimization. nnJIT,which was co-designed with TensorFlow and web
compilation, significantly reduced compilation and tuning costs, delivering
performance 8.2 times faster than the baseline model. They also proposed
an innovative Hybrid Bayesian Evolution Strategy (HBES) algorithm for
adapting resource usage models to dynamic and heterogeneous environments
in edge computing, using GRU (Gated Recurrent Unit) neural networks. The
performance improvements with GRU-RNNmodels andHBESwere notable,
and nnJIT’s maximum memory usage was on average 55.7% and 49.6%
lower than TF.js and ORT-Web, respectively, with only a 2.2% increase in
maximum memory.

In this study, as a first step to addressing these issues, we experimented with
various serving methodologies using small-scale text classification models
based on LSTM and GRU. The reasons for using small-scale models are as
follows: Firstly, small models require relatively fewer resources compared to
large-scale models, allowing for the quick and efficient evaluation of different
serving methods. Secondly, results from experiments with smaller models
can provide foundational data that can be used to identify and optimize
potential problems when scaling up to more complex models, as well as
offering direction for such expansions.

Therefore, this research aims to provide a foundational guide to improve
the efficiency of serving natural language processing models by comparing
the serving performance of small models using REST API (Bansal and
Ouda, 2022), TensorFlow Serving (Olston et al., 2017), and TensorFlow.js
(Smilkov et al., 2019), and evaluating the advantages and disadvantages of
each method.

Web-Based AI Model Serving Overview

Models like ChatGPT are accessed via web browsers or dedicated
applications on the internet, which optimizes artificial intelligence (AI) model
services to be web-based rather than requiring the model to run directly
on personal computers or mobile phones. This approach leverages server
support, eliminating reliance on low-performance endpoint devices. AI model
serving refers to the process of deploying trained AI models for real-world
use, allowing them to function online for real-time predictions or offline for
batch processing tasks (Kwon et al., 2023).

There are three main types of AI model serving: online serving (real-
time serving), batch serving, and the microservices architecture. Online
serving provides immediate prediction results in response to user requests.
This system is commonly implemented through web servers or Application
Programming Interfaces (APIs), handling various user requests and returning
appropriate responses. Online serving processes HTTP requests from web
browsers or other clients, provides responses such as HTML documents or
necessary data, and performs data preprocessing and predictions using the
model. Additionally, it serves as an interface between the server and client,
exposing necessary functionalities for programs or applications. Common
methods of implementing online serving include building APIs with web



174 Kim et al.

frameworks such as Python’s FastAPI, utilizing cloud services like Amazon
Web Services (AWS), or employing serving libraries. Key considerations for
online serving include real-time performance (minimizing latency for quick
response times), stability, scalability, and maintainability. Online serving is
exemplified by large language models (LLMs) like ChatGPT.

Batch serving processes data in bulk at specific intervals rather than
handling individual requests in real-time. It is ideal for tasks where immediate
results are not required. For example, data processing commands can
be executed at 10 AM and 11 AM daily. Data is grouped into batches
(such as every 30 minutes) and processed together, often using workflow
automation tools such as Apache Airflow or Cron Job. The main advantages
of batch serving include ease of implementation and high data throughput,
as large datasets can be processed simultaneously without concerns about
latency. However, the disadvantages include the inability to provide real-time
processing and issues such as the “cold start” problem, which means newly
introduced content cannot be recommended immediately.

The microservices architecture is an approach in which independent
services communicate through lightweight APIs. This architecture enables
different components of an application to be developed and managed
separately, allowing development and operations teams to collaborate
efficiently without interference. As a result, more developers can work on
the same application simultaneously, reducing overall development time.

Understanding NLP Overview

NLP (Natural Language Processing) is a field of technology that enables
computers to interpret and understand human language. This field involves
analyzing and processing text and speech data for use in various applications
such as machine translation, sentiment analysis, dialogue systems, and
information extraction. NLP is situated at the intersection of computer
science, artificial intelligence, and linguistics, and through these technologies,
it allows computers to ‘understand’ human language and respond in natural
language or extract information in a useful way. LSTM (Long Short-Term
Memory) (Hochreiter and Schmidhuber, 1997) and GRU (Gated Recurrent
Units) (Cho et al., 2014) are variations of recurrent neural networks (RNNs)
commonly used in NLP, specialized in learning the features of sequence data,
particularly the temporal sequence and context of language data.

LSTM networks are a type of RNN specifically designed to overcome the
limitations of traditional RNNs, such as the vanishing gradient problem.
This problem occurs when gradients, calculated during the training process
through backpropagation, become exceedingly small, effectively preventing
the model from learning long-range dependencies in the data. LSTM
networks address this issue with a series of gates.

These gates allow LSTMs to selectively remember or forget patterns, which
is especially useful in tasks where understanding the context spread across
significant parts of the text is crucial, such as sentiment analysis or topic
categorization in tweets regarding disasters.

GRU is a simpler variant of LSTM, combines the forget and input gates into
a single “update gate” and merges the cell state and hidden state, resulting



Comparison of AI Model Serving Efficiency: Response Time and Memory Usage Analysis 175

in a model that is easier to compute and often faster to train than its LSTM
counterpart. Despite its simplicity, GRUs have shown to perform on par with
LSTMs on various sequence modeling tasks. The architecture of a GRU is
designed to capture dependencies of different ranges without relying on a
memory unit separate from the hidden state. It effectively captures the short-
term dependencies with fewer parameters and less computational overhead.

Suggest Experiments

The model used in this study is a text classification model based on LSTM,
a type of recurrent neural network. The data utilized is ‘Disaster Tweets’,
and the model processes text data composed of up to 15 words, performing
binary classification in the final layer to predict whether the text belongs
to a specific class. The total number of parameters is 3,988,421, of which
1,329,473 are trainable. Assuming each parameter requires 4 bytes (32 bits),
the total memory requirement of the model is approximately 15.21MB. To
assess the response speed and memory usage of such an NLP model, serving
methods such as REST API, TensorFlow Serving, and TensorFlow.js were
applied. The REST API is an architecture that lies between the client and
server, facilitating communication between them. It is commonly used in web
service development and exchanges data based on the HTTP protocol. REST
has a resource-centric structure and allows the server and client to operate
independently, enhancing scalability and making it suitable for various
services. TensorFlow Serving is a tool designed to smoothly deploy and
operate models, capable of handling multiple client requests simultaneously
due to its high performance. It also utilizes GPUs to enhance inference
speed, showing strengths in real-time predictions. These features provide
high performance, scalability, and real-time prediction capabilities, efficiently
serving models and reducing the complexity and time involved in model
deployment and management. TensorFlow.js consists of Core API and Layers
API and is a library that enables the execution of TensorFlow models in a
JavaScript environment. It allows for running models locally without server
communication and performing inference on the client side.

Figure 1 shows the process where a web client sends a RestAPI request
to a web server to retrieve the result. The server is based on FastAPI and
uses Tensorflow (Python) to directly load and utilize an AI model (.h5) in the
backend environment. The client sends input values to the server, enabling
the server to produce output values.

Figure 1: Interaction between web client and server using RestAPI with FastAPI and
TensorFlow.



176 Kim et al.

Figure 2 shows the AI model was saved in the SavedModel format, and the
TensorFlow Serving image was downloaded in Docker. The prepared model
was served via Docker. For the deployed model, requests can be sent in API
format to receive the model’s output values. Input data is sent through the
client, and the server transmits the input values to the TensorFlow Serving
API address to obtain the results, which are then sent back to the client.

Figure 2: Workflow of AI model deployment and interaction using TensorFlow serving
in docker.

Figure 3 shows TensorFlow.js utilizes WebGL for GPU acceleration,
which significantly enhances the speed of large matrix operations. In most
cases, WebGL is automatically employed in environments where GPUs are
available, optimizing computational performance.

Figure 3: Optimizing computational performance with GPU acceleration in
TensorFlow.js using WebGL.

Figure 4 show the process of converting and utilizing a TensorFlow model
into TensorFlow.js involves several key steps. Firstly, the tf.data API is used to
set up a data input pipeline designed for efficiently handling large-scale data.
This pipeline may perform feature engineering tasks using tf.feature_column
to enhance model performance. Feature engineering involves transforming or
creating features to make the data more understandable for the model, such
as categorizing, scaling, or converting categorical variables into numerical
values, thereby optimizing the data for better model performance. In the
model construction and training phase, tf.keras or tf.estimator APIs are
used to build and train the model. If transfer learning is needed, pre-trained
modules from TensorFlow Hub can be integrated. Once training is complete,
the Distribution Strategy API enables the model to be trained in a distributed
manner across various hardware environments (CPU,GPU, TPU), facilitating



Comparison of AI Model Serving Efficiency: Response Time and Memory Usage Analysis 177

large-scale data processing and optimizing training speed. The trained
model is then exported in the standard SavedModel format, which can be
utilized across different deployment environments and converted for use
in TensorFlow.js. The conversion is done using the tensorflowjs_converter
tool, which generates a model.json file and several.bin files. The model.json
file contains the structure and metadata of the model, while the.bin files
store the split weights data the model has learned. These two file sets serve
to load and run the model in web browsers and Node.js environments,
and the converted TensorFlow.js model can be deployed and utilized in
web browser or Node.js server environments. Table 1 presents the list of
libraries used in the experimental environment of this paper, along with their
version information. The key libraries include Express.js and TensorFlow.js
for NodeJS, and FastAPI, Keras, Numpy, Pandas, and scikit-learn for Python.

Figure 4: Interaction between web client and server using RestAPI with FastAPI and
TensorFlow.

Table 1. Library information for experimental
environment setup.

Librarys

NodeJS 16.20.2
Express.js: 4.19.2
csv-parse: 4.19.2
@tensorflow/tfjs-node: 4.21.0
Python 3.19.9
FastAPI: 0.113.0
uvicorn: 0.30.6
joblib: 1.4.2
keras: 3.5.0
pydantic: 2.9.0
numpy: 1.26.4
pandas: 2.2.2
tensorflow: 2.17.0
scikit-learn: 1.5.1



178 Kim et al.

EXPERIMENTS RESULTS

The Table 2 and Table 3 represent the speed of processing and memory
usage by inputting data into the LSTM model ten times and applying REST
API (Fast API), TensorFlow Serving, and TensorFlow.js techniques. It can
be seen that the REST API takes about 0.22 seconds for the first request
but maintains a consistent speed of under 0.05 seconds from the second
request onwards. The slower processing speed for the first request appears
to be due to the need for model loading, and the subsequent requests
show improved speed as the model resides in memory. TensorFlow Serving
consistently maintains the fastest processing speed of less than 0.005 seconds.
Compared to the REST API (Fast API), it maintains a fast speed from the first
request, likely because TensorFlow Serving preloads the model into memory.
TensorFlow.js has a processing speed similar to TensorFlow Serving on the
first request but shows around 0.025 seconds thereafter, and from the seventh
request, it shows about 0.019 seconds, which is slower than TensorFlow
Serving but faster than REST API (Fast API). This performance is due to
the method of TensorFlow.js, which allows direct model execution in the
browser, eliminating communication delays as the model runs directly on the
client side.

The Table 2 and Table 3 display data on memory usage across ten inputs
into the LSTM model, comparing three different model serving techniques.
The REST API (Fast API) had the highest memory usage at approximately
450MB, followed by TensorFlow Serving and TensorFlow.js, in that order.
TensorFlow Serving and TensorFlow.js showed similar patterns of memory
usage, but from the fourth request onwards, TensorFlow.js exhibited lower
memory consumption. This is likely because TensorFlow.js runs the model
on the client side, thus utilizing minimal server resources.

Table 2. LSTM model processing speed (sec).

Iteration 1 2 3 4 5 6 7 8 9 10

RestAPI
(FastAPI)

0.221 0.046 0.046 0.046 0.046 0.048 0.045 0.046 0.046 0.047

TensorFlow Serving 0.044 0.005 0.006 0.005 0.005 0.004 0.004 0.005 0.005 0.005
TensorFlow.js 0.044 0.024 0.025 0.023 0.026 0.024 0.019 0.03 0.02 0.017

Table 3. LSTM model memory usage (Mb).

Iteration 1 2 3 4 5 6 7 8 9 10

RestAPI
(FastAPI)

500 450 451 451 451 451 452 452 452 452

TensorFlow Serving 127 127 127 127 114 113 113 113 113 113
TensorFlow.js 129 130 134 99 99 99 98 99 99 99

Additionally, we tested a GRU-based text classification model, which is
also an NLP model, using the same three serving methods to verify if similar
results could be obtained as with other models. This model was trained
using the same data as the LSTM-based model and has a total of 3,951,941



Comparison of AI Model Serving Efficiency: Response Time and Memory Usage Analysis 179

parameters, with 1,317,313 being trainable. The total memory requirement
for the model is 15.08MB, indicating that it has similar specifications to the
LSTM-based model.

According to the Table 4 and Table 5, which analyze processing speeds,
using the REST API (Fast API) with the GRU model resulted in about 0.25
seconds for the first request, similar to the LSTM model, and subsequently
maintained a speed of around 0.05 seconds. TensorFlow Serving shows a very
fast response, maintaining a consistent speed of less than 0.0045 seconds
from the second request onwards. TensorFlow.js takes about 0.03 seconds
for the first request and stabilizes at around 0.02 seconds for subsequent
requests.

As for memory usage, as shown in the Table 4 and Table 5, serving with
the REST API (Fast API) results in the highest memory usage. Following
this, similar to when serving the LSTM model, TensorFlow Serving and
TensorFlow.js show lower memory consumption, in that order.

When analyzing the processing speed and memory usage for serving
methods using LSTM and GRU-based models, both models exhibited similar
patterns in their results. Both the LSTM and GRU models demonstrated the
fastest processing speeds and the most efficient usage when the TensorFlow
Serving method was applied. When using TensorFlow.js, the models
maintained relatively fast speeds with the least memory usage. Lastly, the
REST API (Fast API) method recorded comparatively higher values in both
processing speed and memory usage, particularly showing a tendency for
reduced performance on the first request.

Table 4. GRU model processing speed (sec).

Iteration 1 2 3 4 5 6 7 8 9 10

RestAPI
(FastAPI)

0.229 0.0454 0.0452 0.0602 0.0456 0.0461 0.0466 0.0443 0.0452 0.0449

TensorFlow
Serving

0.0239 0.0045 0.0048 0.0045 0.0049 0.0049 0.0042 0.0045 0.0048 0.0046

TensorFlow.js 0.0505 0.0285 0.028 0.029 0.0257 0.0249 0.0243 0.0202 0.0195 0.0187

Table 5. GRU model memory usage (Mb).

Iteration 1 2 3 4 5 6 7 8 9 10

RestAPI
(FastAPI)

451.37 452.37 453.14 453.67 454.12 454.27 454.15 454.24 454.5 454.69

TensorFlow
Serving

126.9 127.1 127.24 127.35 112.85 112.81 112.95 113.06 113.22 113.34

TensorFlow.js 128.56 129.93 132.83 99.61 99.75 99.85 100 98.47 98.99 99.89

CONCLUSION

In this paper, we analyzed the processing speed and memory usage for
servingNLPmodels using RESTAPI,TensorFlow Serving, and TensorFlow.js.



180 Kim et al.

Experiments conducted with an LSTM-basedmodel showed that TensorFlow
Serving offered the best performance in terms of processing speed and
memory usage. When applying TensorFlow.js, it processed at a relatively
fast speed and exhibited the lowest memory usage. The REST API had
comparatively higher processing speeds and memory usage than the other
two methods. This pattern was also observed with GRU-based models,
which are similarly used in NLP applications like LSTM. The results
suggest that TensorFlow Serving is most suitable for large-scale real-time
serving environments. Moreover, the minimal memory usage demonstrated
by TensorFlow.js could be particularly beneficial for lightweight web
applications or mobile environments.

Future research will involve conducting additional experiments across
various server and network environments. We aim to analyze performance
changes through scenario-based experiments that reflect real-world
situations such as increases in concurrent user numbers and varying
complexities of prediction requests. Beyond the currently used performance
metrics of speed and memory usage, we also plan to evaluate additional
factors such as CPU/GPU utilization and network bandwidth to further
expand the performance metrics. Through this expansion, we intend to
provide a more comprehensive evaluation of system performance, thereby
enhancing the accuracy of system efficiency and stability analysis and
offering better directions for model serving.

ACKNOWLEDGMENT

This work was supported by Innovative Human Resource Development for
Local Intellectualization program through the Institute of Information &
Communications Technology Planning & Evaluation(IITP) grant funded by
the Korea government (MSIT) (IITP-2024-RS-2020-II201791).

REFERENCES
Bansal, P., & Ouda, A. (2022, July). Study on integration of FastAPI and

machine learning for continuous authentication of behavioral biometrics.
In 2022 International Symposium onNetworks, Computers and Communications
(ISNCC) (pp. 1–6). IEEE.

Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., & Bengio, Y. (2020). Learning phrase representations using RNN
encoder-decoder for statistical machine translation. arXiv 2014.arXiv preprint
arXiv:1406.1078.

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-term Memory. Neural
Computation

Jia, F., Jiang, S., Cao, T., Cui,W., Xia, T., Cao, X.,... & Yang,M. (2024). Empowering
In-Browser Deep Learning Inference on Edge Devices with Just-in-Time Kernel
Optimizations.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C. H.,... & Stoica, I. (2023,
October). Efficient memory management for large language model serving with
pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles (pp. 611–626).



Comparison of AI Model Serving Efficiency: Response Time and Memory Usage Analysis 181

Olston, C., Fiedel, N., Gorovoy, K., Harmsen, J., Lao, L., Li, F.,... & Soyke, J.
(2017). Tensorflow-serving: Flexible, high-performance ml serving.arXiv preprint
arXiv:1712.06139.

Smilkov, D., Thorat, N., Assogba, Y., Nicholson, C., Kreeger, N., Yu, P.,... &
Wattenberg, M. M. (2019). Tensorflow. js: Machine learning for the web and
beyond. Proceedings of Machine Learning and Systems, 1, 309–321.

Wang, Q., Jiang, S., Chen, Z., Cao, X., Li, Y., Li, A.,... & Liu, X. (2024).
Anatomizing Deep Learning Inference in Web Browsers. ACM Transactions on
Software Engineering and Methodology.


	Comparison of AI Model Serving Efficiency: Response Time and Memory Usage Analysis
	INTRODUCTION
	Web-Based AI Model Serving Overview
	Understanding NLP Overview
	Suggest Experiments

	EXPERIMENTS RESULTS
	CONCLUSION
	ACKNOWLEDGMENT


