
Human Factors in Design, Engineering, and Computing, Vol. 159, 2024, 1938–1948

https://doi.org/10.54941/ahfe1005761

A Framework for Developing
Collaborative Community Building Tools
for Novice Computer Science Students
Daniel M. Olivares, Jakob F. Kubicki, and Katie N. Imhof

School of Engineering & Applied Science, Spokane, WA 99258-0102, USA

ABSTRACT

Students enrolled in introductory computer science courses tend towards individual
work because of pedagogical practices discouraging collaboration and a focus on
individual assignments. This can discourage new computer science students and may
negatively affect persistence in computer science. In contrast, social learning theory
research suggests a connection between student success and involvement with the
learning community. The research presented in this paper puts forth a framework
based on social learning theories and teaching and learning methodologies. Tools
using this framework will leverage social computing towards building stronger, more
connected, social networks and contribute to greater success in student learning
outcomes. Using a learner-centered design method, this framework seeks to maintain
a focus on the important design questions: how should learning opportunities be
scaffolded in a social computing environment? How can we make people more
effective learners and promote peer collaboration? How should we motivate learners
to remain engaged and form connections? Based on this, the framework speaks to the
following guidelines for successful tools stimulating social interaction in a learning
environment: 1) scaffolded activities to structure and stimulate community and
tool engagement, 2) motivation generating techniques to increase user interaction,
3) competition and community building features supported through gamification to
foster learner success. Tools built from this framework’s requirements should promote
higher levels of interaction and lead to improved learning outcomes, attitudes, and
social connectedness by supporting collaboration and problem solving. Further, the
framework developed in this paper sets the foundation for future research testing the
efficacy of interventions built around a social computing hub where problem solving
takes place.

Keywords: Social computing, Social learning, Gamification, Software framework, Community
building interfaces, Computer science education

INTRODUCTION

Motivation

Historically, introductory computer science courses are designed with
individual student work in mind and, as a result, this pedagogical
method can discourage collaboration by focusing on individual assignments
(Hundhausen et al., 2008). For new computer science students, this can

© 2024. Published by AHFE Open Access. All rights reserved. 1938

https://doi.org/10.54941/ahfe1005761


A Framework for Developing Collaborative Community Building Tools 1939

discourage collaborative learning and may negatively affect persistence in
computer science (Rosson et al., 2011). This historical approach is at odds
with what social learning theory and related research suggest are beneficial
for learner success. Specifically, that social interaction and involvement in the
learning community can be positively associated with greater student success,
e.g., see (Astin, 1999; Kolb and Kolb, 2005). Collaboration with peers and
mentors can play a key role in increasing social interaction and involvement
and help form stronger connections with the learning community. As a result,
this could also promote the likelihood of learner success.

We also see from a study analyzing student-used collaboration tools
(Ying and Boyer, 2020) that current collaboration tools widely utilized by
students are not meeting students’ current needs. This highlights another
barrier to collaboration and community building in novice computer science
student learning environments. A result of this lack of a widely utilized
collaboration tools geared towards novice learners is that students tasked
to collaborate on a project often use external applications (e.g., “Discord,”
n.d.; “Slack,” n.d.) that may not meet their needs to complete tasks and share
code – this can hamper the collaborative learning process. Further, many
students end up making use of non-coding applications in their attempt to
collaboratively code to overcome steep learning curves found in more coder-
focused tools (Ying and Boyer, 2020). Insufficient or overly complex tools
are not the only barrier to learner collaboration. There are also concerns
surrounding informal and unstructured collaboration tools. For example,
failing to learn the material properly, developing poor coding practices, or
code plagiarizing are of concern and continue to be of interest in ongoing
research on code plagiarism detection (Cheers et al., 2020). Despite these
barriers and concerns, there is still value in student collaboration: student
success. Use of collaboration tools have been shown to positively affect
the collaborative processes by increasing the range, speed and information
content of communication, automating goal tracking processes and by
providing additional avenues for information distribution (Knutas et al.,
2014b). Indeed, collaborative programming tools do exist and attempt to
leverage the benefits of collaborative coding, e.g., see (Boyer et al., 2008;
“Replit,” n.d.), but these have failings that limit their scope and application
usefulness by being limited to specific languages and platforms and/or being
closed-source rather than open-source.

Another challenge with use of collaborative programming tools is user
adoption and use of new tools leading us to ask which factors do potential
users consider most important when adopting a new tool (Palani et al.,
2022) and how can we overcome barriers to adoption? This is especially
difficult for tools introducing new strategies and/or used as part of the
learning environment (Taylor et al., 2018). Studies have shown that providing
instructors and students with tutorials, e.g. through a series of workshops
or videos that can be viewed online, can help integrate adoption of new
tools into courses (Clarke et al., 2010). That may provide a starting point
for introducing new tools to the learning community.



1940 Olivares et al.

Necessity of a Universal Collaborative Community Building Tool: The
Foundation for a Solution

These challenges motivate the necessity for universal collaborative coding
tools to bridge the gap between currently available tools and resources.
General purpose tools currently available have specific niche focuses, e.g.,
the Visual Studio Code extension Direct Messages (“Direct Messages,” n.d.)
integrates direct messaging into the coding environment and Microsoft’s
Live Share (“Microsoft Live Share,” n.d.) adds collaborative coding sessions
but both are not necessarily designed primarily for novice computer science
students.

With these considerations in mind, the framework put forward in this
paper focuses on supporting students in learner-centered academic settings
and not general-purpose settings. Tools created via from framework are
structured to achieve the goal of promoting community building and
social interaction through empirically based gamification methodologies and
collaborative problem-solving strategies. Our research aims to answer the
following three primary research questions with regards to tools created
based on the framework.

RQ1: Will learners with higher levels of interaction with the tool show
increased involvement with the learning community (peers, instructors)?

RQ2: Will increased interactions with the tool be associated with an
increase in behaviors shown to positively affect student success?

RQ3:Will increased indicators (interaction levels, behaviors) be associated
with a positive change in student success in computer science courses?

RELATED WORK

A survey of existing tools illustrates an array of prior works with features
that overlap with our framework goals presented in this paper but
also have key issues preventing full usefulness in our proposed scenario.
Microsoft’s Live Share (“Microsoft Live Share,” n.d.), for example, enables
code sharing and collaboration but has limitations regarding number of
participants. Likewise, Cloud IDE Codeanywhere (“Codeanywhere,” n.d.)
has cloud-based collaborative coding but has constraints like subscription
fees and participant limits. Codeshare (“Codeshare,” n.d.) is another online
collaborative coding tool. Unlike Codeanywhere, Codeshare is free but
has other issues, e.g., advertisements in the coding environment and a
broad target use cases like coding interview sessions. In contrast, Replit
(“Replit,” n.d.) is a collaborative coding environment that touches on
many of the collaborative aspects fitting in our framework but has its own
limitations. It is an online browser-based IDE and lacks the ability to integrate
features required as part of our framework, e.g., integrated scaffolding of
problem-solving activities or social interaction-based gamification strategies
addressing motivation or engagement.

Social interaction-focused applications not originally designed for coding
have also been utilized in the classroom. Discord (“Discord,” n.d.) is
an instant messaging social platform app with studies demonstrating that
students found the instant messaging and text channels to be powerful



A Framework for Developing Collaborative Community Building Tools 1941

collaboration tools with 68% of computer science students reporting that
Discord helped team members assist each other (Bridson et al., 2022).
Slack (“Slack,” n.d.) contains similar features such as chat rooms organized
by topic, private groups, and direct messaging. However, both Discord
and Slack were not built for a classroom environment and lack built-in
features designed with computer science students in mind (e.g., coding
challenges, anonymous posting, office hours, etc.). Piazza (“Piazza,” n.d.)
is a widely utilized classroom tool that contains many useful features, but
the user interface, formality of its design, and lack of direct messaging limit
approachability for novice computer science students (Bridson et al., 2022).

A significant issue with these tools is that they tend towards being overly
complex and are not intended for novice programmers or that they are not
able to be integrated as part of the learner’s problem-solving and social
environment efficiently. They may also have usage limits, may be designed
more towards niche programming scenarios, or may have a fee structure
attached for use. The necessity for a universal collaborative tool dictates
combining elements from collaboration tools that have been proven to
boost user engagement and promote social collaboration between students.
Helpful collaboration features integrated directly into a single environment
can allow students to work more easily in groups, pairs, or with instructors
on collaborative or social tasks; all things which have been proven to boost
overall productivity for students (Boyer et al., 2008).

RESULTS

Elements of a Framework for Developing Collaborative Community
Building Coding Tools

For the purposes of this research, a collaborative community building tool
is one that meets the needs of novice computer science students in their
problem-solving environment. The following framework emphasizes three
primary elements necessary to structure learning, stimulate social interaction,
and keep students engaged in a learning environment.

Scaffolding. Scaffolded activities are used to structure and stimulate
community engagement and to encourage interaction with the tool and
the community. This is a key feature that is lacking in related general-
purpose tools commonly used by novice computer science students. Many
of these tools, while supporting collaborative tasks, are general use tools
and do not provide necessary scaffolding geared towards learning. Scaffolded
learning opportunities are a key foundation for this framework’s success (see
scaffolding theory: Wood, 1976). Further, research has shown the importance
of scaffolding as part of the learning process (Reiser, 2004) and its inclusion
as a vital component of methods like game- and problem-based learning
(Sharma and Giannakos, 2023). Therefore, scaffolding techniques should be
one of the key pillars of a framework used for creating tools to aid novice
computer science students and may yield best results if carefully integrated
into the learning process (Sharma and Hannafin, 2007).

Motivation. Motivation generating techniques can be used to increase
user interaction with software tools. This framework builds on the premise



1942 Olivares et al.

that tools created for the purpose of aiding novice programmers should
be focused on encouraging and building a social learning environment that
supports collaboration and problem solving while also providing support for
instructor guidance and structured to support many problems new computer
science students face in the classroom. Indeed, social context and influences
play a role in learner motivation (Cook and Artino, 2016). Prior research
shows that not only is social interaction important as part of the learning
process (Carter et al., 2017) but also shoes promise when it is the focus
of a problem-solving tool in a learning environment. Further, increased
interactions with social programming tools may have positive correlations
with more frequent social activity, positive attitudes toward peer learning,
more closely coupled social networks, and improved performance in some
cases (Olivares et al., 2021). In addition, gamification techniques can also
positively affect motivation (Cahyono, 2023).

Engagement. Continued engagement in a learning environment is another
challenge as demonstrated by ongoing struggles to improve weak engagement
in the Computer Science discipline (Morgan et al., 2018). This can not only
be an issue for learning but one of adoption of learning tools. One method
for capturing the attention of learners to overcome the challenge of user
adoption of a new tool is to include gamification as part of the learning
environment (Cahyono, 2023; Marín et al., 2018). Likewise, this approach is
also supported by results seen in a 2014 study (Knutas et al., 2014a) showing
gamification features used to foster collaboration and community. Therefore,
the goal of increased engagement can be tackled with tools supporting
focused social interaction and gamification features to foster learner success
by encouraging competition and community building.

Successful tools founded on primary elements of this framework should:
1) set learners up with scaffolded learning opportunities, 2) motivate
learners to interact with the learning community by promoting social
interaction, and 3) adopt and remain engaged with the learning materials.
The hypothesized benefits include improved learning outcomes, attitudes,
and social connectedness.

Developing a Framework-Based Collaborative Community Building
Coding Tool

Ultimately, the framework provides guidelines that can be put into practice
as a practical tool such as one developed for a commonly used code editing
workspace like Visual Studio Code (“Visual Studio Code,” n.d.) as an
extension. Visual Studio Code is an ideal environment due to its cross-
platform utility (i.e., target users not limited to a single platform) and
capabilities to expand and integrate new functionality using extensions.
Additionally, its widespread use, adoption, and availability in places like
GitHub’s Codespaces (“Codespaces,” n.d.), e.g., Harvard’s CS50 adaptation
of this has been used by more than 80,000 users historically (Malan, 2022)
emphasize its future value.

Following that motivation, our research follows a mixed methods
approach for the design and development of a framework-based tool



A Framework for Developing Collaborative Community Building Tools 1943

to answer RQ1-3. Primarily, research suggesting that the inclusion of
scaffolded social interaction (Boyer et al., 2008; Carter et al., 2017;
Olivares et al., 2021) and gamification(Knutas et al., 2014a; Marín et al.,
2018) features can benefit learner success. The framework supports this
research to encourage competition and community building so our tool,
the Coding Social Hub (CSH, see Figure 1), leverages the benefits of
including a social aspect into the problem-solving environment. From that
increased social interaction and involvement in the learning environment we
ultimately aim towards the goal of improved success among learners. Further,
development of the CSH is designed to evaluate gamification approaches
designed to increase engagement will include use badges and challenges
to encourage student competition, collaboration and towards fostering a
stronger learning community. For example, when students complete coding
challenges (participation assignments, collaborative tasks, etc.), they would
be rewardedwith a relevant badge. Leaderboards tie the gamification features
to the community building and social interaction aspects of the tool and
situate interactions and achievements within the learning community to
provide motivational context to learners.

Figure 1: Coding social hub as an extension for visual studio code. The left pane
(1) shows forum categories, coding challenges, chat groups, and users (2)b,c. The
middle pane (3) shows a collection of open chat conversations b,c and the current
user’s profile highlighting a user bio, recent badges (4)b,c, and projects. The right pane
(5) shows an open coding challengea,c and expands on the current coding challenge
tasks (5). [Framework elements: aScaffolding, bMotivation, cEngagement].

METHODS

Implementation and Testing a Framework-Based Collaborative Community
Building Coding Tool. The design approach and testing of the tool described
in this paper follow an iterative, user- and learner-centered design approach



1944 Olivares et al.

(Hsi and Soloway, 1998; Norman and Draper, 1986) and the goal of
designing with the user and the learner in mind. A challenge the design of
this software tool must overcome is not just one of adoption (Palani et al.,
2022; Taylor et al., 2018) but also one of keeping the learner at its center
because learner success is at the core of our tool’s goals. User-centered design
is the base of our design approach, but learner-centered design maintains
focus on the important questions we must keep in mind: how can we make
people more effective learners, adopt our tool (students and instructors)
and promote/motivate peer collaboration? How should we scaffold learning
opportunities? How should we motivate learners to remain engaged?
(Hsi and Soloway, 1998)

Tool Design.The framework-based tool interface prototype (Figure 1) uses
a variety of libraries available in the Visual Studio Code environment. Initial
design iterations are developed as a web-based interface using HTML, CSS,
and TypeScript/JavaScript on the front-end and NodeJS with MongoDB on
the back end. Evaluation of these designs’ ease of use, speed, and resource
usage to maintain usability for the user in the form of a lightweight extension
is also a part of this research.

Participants. Each prototype design iteration is followed by user testing
sessions with 3–5 target users (computer science students, faculty) to gauge
initial user feedback and to further refine the tool design. Initial participant
pools consist of CS1 (introductory) level students, but the chosen tool
platform supports a large array of programming languages and therefore
other course topics (e.g., web development). With that in mind, typical
participants will be first and second year Computer Science students and
expand to include third and fourth year when participant testing expands
to additional course topics. Additional participants will be recruited and
included in future studies with classroom-wide testing (typically 20–30
students per section).

Iterative Design Process. Early prototype feedback sessions focus on
individual tool features to elicit feedback on specific interface elements and
usability and will be situated around a scenario to provide context for the
individual feature usage in the overall environment, e.g., the entirety of
Figure 1 along with a scenario provided for context to frame the user mindset
within the learning environment while eliciting feedback on a specific feature
subset.

Data Collection. Data collected during these studies will consist of audio
and video recordings, semi-structured interviews, user surveys (pre-mid-
post when viable). Additionally, during testing of the live interface, logged
interaction data will answer RQ1-2. Anonymized collection of student
success metrics (grades) will help assess RQ3.

Tool Efficacy. A series of larger scale testing will be conducted to validate
the efficacy of these tools with deployment in introductory computer science
courses. Individual testing of each of the three components of the framework
using logged data and survey results will address assessed effectiveness of
each component.



A Framework for Developing Collaborative Community Building Tools 1945

CONCLUSION

Following the research motivating the framework, one can conclude that
supporting these guidelines should, in theory, result in positively associated
results. That is, learners interacting with tools that support scaffolded
interactions and include motivation- and engagement-supporting features
will be more likely to be involved in the learning community and therefore
enjoy greater learning success. This leaves the next steps of future work to
test these hypotheses with tools created using the framework guidelines. The
goals of our research are to accomplish three key contributions to further
educational technologies for computing education

A foundational framework for building collaborative community building
coding tools. Prior research has shown evidence of ways in which we can
structure and stimulate desired behavior (e.g., scaffolding, gamification)
and the potential benefits that can come as a result (e.g., stronger learning
community, higher likelihood of success). The framework presented in this
paper is a starting point.

Implementation and validation of a collaborative community building
tool. Based on research into collaboration strategies and tools, we believe
the presented tool is a promising way to promote user collaboration and
communication embedded as a vital part of the problem-solving process in
computer science classes. The described extension (Figure 1) leverages the
framework and lessons learned from prior works to improve student and
teacher communication, foster a sense of community, and success within the
classroom.

Empirical effectiveness of the tool. As a result of the development, user
testing, and data collection during a semester-long deployment study, we
expect to provide empirically based evidence on the tool’s effectiveness
as a collaboration and community-building tool embedded in a coding
environment and whether it improves community communication and
collaboration rather than hinder it.

FUTURE WORK

Future work necessitates deploying a study in a classroom environment over
the course of a semester. A benefit of Visual Studio Code as the programming
environment is that specific courses and programming languages should not
necessarily be a limit because of the wide array of languages supported by
Visual Studio Code. This opens the possibility of adopting this tool in both
introductory and advanced computer science courses. Likewise, a key next
step is to make the tool available to other institutions for a broader range
of participants as part of the testing process. Plagiarism is also an ongoing
concern in a computer science classroom (Cheers et al., 2020). This issue is
further compounded by the recent adoption of Artificial Intelligence tools
like ChatGPT and the question of detecting (e.g., Mouli et al., 2024) or using
it as a learning tool (Cipriano and Alves, 2023). Interestingly, “guardrailed”
approaches using AI tools have already received positive reception (Liu et al.,
2024) and warrant research on possible integration into the framework for
building collaborative community building tools.



1946 Olivares et al.

REFERENCES
Astin, A. W., 1999. Student involvement: A developmental theory for higher

education. Journal of College Student Development 40, 518–529.
Boyer, K. E., Dwight, A. A., Fondren, R. T., Vouk, M. A., Lester, J. C.,

2008. A development environment for distributed synchronous collaborative
programming, in: Proceedings of the 13th Annual Conference on Innovation
and Technology in Computer Science Education, ITiCSE ‘08. Association for
Computing Machinery, New York, NY, USA, pp. 158–162. https://doi.org/10.
1145/1384271.1384315

Bridson, K., Atkinson, J., Fleming, S. D., 2022. Delivering Round-the-Clock
Help to Software Engineering Students Using Discord: An Experience Report,
in: Proceedings of the 53rd ACM Technical Symposium on Computer Science
Education V. 1, SIGCSE 2022. Association for Computing Machinery, New York,
NY, USA, pp. 759–765. https://doi.org/10.1145/3478431.3499385

Cahyono, D., 2023. Gamification for Education: Using LexiPal to Foster Intrinsic
and Extrinsic Learning Motivation of Students with Dyslexia, in: Proceedings
of the 14th International Conference on Education Technology and Computers,
ICETC ‘22. Association for Computing Machinery, New York, NY, USA,
pp. 32–38. https://doi.org/10.1145/3572549.3572555

Carter, A. S., Hundhausen, C. D., Adesope, O., 2017. Blending Measures of
Programming and Social Behavior into Predictive Models of Student Achievement
in Early Computing Courses. ACM Transactions on Computing Education 17,
1–20.

Cheers, H., Lin, Y., Smith, S. P., 2020. Detecting Pervasive Source Code Plagiarism
through Dynamic Program Behaviours, in: Proceedings of the Twenty-Second
Australasian Computing Education Conference. Association for Computing
Machinery, New York, NY, USA, pp. 21–30.

Cipriano, B. P., Alves, P., 2023. GPT-3 vsObject Oriented ProgrammingAssignments:
An Experience Report, in: Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education V. 1, ITiCSE 2023. Association for
Computing Machinery, New York, NY, USA, pp. 61–67. https://doi.org/10.1145/
3587102.3588814

Clarke, P. J., Allen, A. A., King, T. M., Jones, E. L., Natesan, P., 2010.
Using a web-based repository to integrate testing tools into programming
courses, in: Proceedings of the ACM International Conference Companion on
Object Oriented Programming Systems Languages and Applications Companion,
OOPSLA ‘10. Association for Computing Machinery, New York, NY, USA,
pp. 193–200. https://doi.org/10.1145/1869542.1869573

Codeanywhere [WWW Document], n.d.. Cloud IDE · Online Code
Editor · Codeanywhere. URL https://codeanywhere.com/index

Codeshare [WWW Document], n.d.. Codeshare - Share code in real-time with
developers in your browser. URL https://codeshare.io/

Codespaces [WWW Document], n.d.. GitHub Codespaces · GitHub. URL https://gi
thub.com/features/codespaces

Cook, D. A., Artino, A. R., 2016. Motivation to learn: an overview of contemporary
theories. Med Educ 50, 997–1014. https://doi.org/10.1111/medu.13074

Direct Messages [WWW Document], n.d.. Extension for Visual Studio Code -
Direct Messages for VS Code. URL https://marketplace.visualstudio.com/items?
itemName=techsyndicate.vscode-dms

Discord [WWW Document], n.d.. Discord - Group Chat That’s All Fun & Games.
URL https://discord.com/

https://doi.org/10.1145/1384271.1384315
https://doi.org/10.1145/1384271.1384315
https://doi.org/10.1145/3478431.3499385
https://doi.org/10.1145/3572549.3572555
https://doi.org/10.1145/3587102.3588814
https://doi.org/10.1145/3587102.3588814
https://doi.org/10.1145/1869542.1869573
https://codeanywhere.com/index
https://codeshare.io/
https://github.com/features/codespaces
https://github.com/features/codespaces
https://doi.org/10.1111/medu.13074
https://discord.com/


A Framework for Developing Collaborative Community Building Tools 1947

Hsi, S., Soloway, E., 1998. Learner-centered design: specifically addressing the needs
of learners. SIGCHI Bull. 30, 53–55. https://doi.org/10.1145/310307.310374

Hundhausen, C. D., Narayanan, N. H., Crosby, M. E., 2008. Exploring studio-based
instructional models for computing education, in: Proceedings of the 39th SIGCSE
Technical Symposium on Computer Science Education, SIGCSE ‘08. Association
for Computing Machinery, New York, NY, USA, pp. 392–396. https://doi.org/10.
1145/1352135.1352271

Knutas, A., Ikonen, J., Nikula, U., Porras, J., 2014a. Increasing collaborative
communications in a programming course with gamification: a case study, in:
Proceedings of the 15th International Conference on Computer Systems and
Technologies, CompSysTech ‘14. Association for Computing Machinery, New
York, NY, USA, pp. 370–377. https://doi.org/10.1145/2659532.2659620

Knutas, A., Ikonen, J., Ripamonti, L., Maggiorini, D., Porras, J., 2014b. A study of
collaborative tool use in collaborative learning processes, in: Proceedings of the
14th Koli Calling International Conference on Computing Education Research,
Koli Calling ‘14. Association for Computing Machinery, New York, NY, USA,
pp. 175–176. https://doi.org/10.1145/2674683.2674706

Kolb, A. Y., Kolb, D. A., 2005. Learning Styles and Learning Spaces: Enhancing
Experiential Learning in Higher Education. Academy of Management Learning
& Education 4, 193–212.

Liu, R., Zenke, C., Liu, C., Holmes, A., Thornton, P., Malan, D. J., 2024. Teaching
CS50 with AI: Leveraging Generative Artificial Intelligence in Computer Science
Education, in: Proceedings of the 55th ACM Technical Symposium on Computer
Science Education V. 2, SIGCSE 2024. Association for Computing Machinery,
New York, NY, USA, p. 1927. https://doi.org/10.1145/3626253.3635427

Malan, D. J., 2022. Standardizing Students’ Programming Environments with
Docker Containers: Using Visual Studio Code in the Cloud with GitHub
Codespaces, in: Proceedings of the 27th ACM Conference on on Innovation and
Technology in Computer Science Education Vol. 2, ITiCSE ‘22. Association for
Computing Machinery, New York, NY, USA, pp. 599–600. https://doi.org/10.
1145/3502717.3532164

Marín, B., Frez, J., Cruz-Lemus, J., Genero, M., 2018. An Empirical Investigation
on the Benefits of Gamification in Programming Courses. ACM Trans. Comput.
Educ. 19, 4:1–4:22. https://doi.org/10.1145/3231709

Microsoft Live Share [WWW Document], n.d.. Use Microsoft Live Share to
collaborate with Visual Studio Code. URL https://code.visualstudio.com/learn/co
llaboration/live-share

Morgan, M., Butler, M., Thota, N., Sinclair, J., 2018. How CS academics view
student engagement, in: Proceedings of the 23rd Annual ACM Conference
on Innovation and Technology in Computer Science Education, ITiCSE 2018.
Association for Computing Machinery, New York, NY, USA, pp. 284–289. https:
//doi.org/10.1145/3197091.3197092

Mouli, C., Kotteti,M., Lal, R., Chetti, P., 2024. Coding Integrity Unveiled: Exploring
the Pros and Cons of Detecting Plagiarism in Programming Assignments Using
Copyleaks. J. Comput. Sci. Coll. 39, 61–69.

Norman, D. A., Draper, S.W., 1986. User Centered System Design: New perspectives
on human-computer interaction. Lawrence Erlbaum, Hillsdale, NJ.

https://doi.org/10.1145/310307.310374
https://doi.org/10.1145/1352135.1352271
https://doi.org/10.1145/1352135.1352271
https://doi.org/10.1145/2659532.2659620
https://doi.org/10.1145/2674683.2674706
https://doi.org/10.1145/3626253.3635427
https://doi.org/10.1145/3502717.3532164
https://doi.org/10.1145/3502717.3532164
https://doi.org/10.1145/3231709
https://code.visualstudio.com/learn/collaboration/live-share
https://code.visualstudio.com/learn/collaboration/live-share
https://doi.org/10.1145/3197091.3197092
https://doi.org/10.1145/3197091.3197092


1948 Olivares et al.

Olivares, D., Hundhausen, C., Ray, N., 2021. Designing IDE Interventions to
Promote Social Interaction and Improved Programming Outcomes in Early
Computing Courses. ACM Transactions on Computing Education (TOCE). https:
//doi.org/10.1145/3453165

Palani, S., Ledo, D., Fitzmaurice, G., Anderson, F., 2022. “I don’t want to feel like I’m
working in a 1960s factory”: The Practitioner Perspective on Creativity Support
Tool Adoption, in: ACM Conferences. Presented at the CHI ‘22: Proceedings of
the 2022 CHI Conference on Human Factors in Computing Systems, pp. 1–18.

Piazza [WWWDocument], n.d. Piazza • Ask. Answer. Explore.Whenever. URL https:
//www.piazza.com

Reiser, B. J., 2004. Scaffolding Complex Learning: The Mechanisms of Structuring
and Problematizing Student Work. Journal of the Learning Sciences 13, 273–304.
https://doi.org/10.1207/s15327809jls1303_2

Replit [WWW Document], n.d.. Replit - Build software faster. URL
https://replit.com/

Rosson, M. B., Carroll, J. M., Sinha, H., 2011. Orientation of Undergraduates
Toward Careers in the Computer and Information Sciences: Gender, Self-Efficacy
and Social Support. ACM Trans. Comput. Educ. 11, 14:1–14:23. https://doi.org/
10.1145/2037276.2037278

Sharma, K., Giannakos, M., 2023. Carry-Forward Effect: Early scaffolding learning
processes, in: Proceedings of the 2023 Symposium on Learning, Design and
Technology, LDT ‘23. Association for Computing Machinery, New York, NY,
USA, pp. 43–52. https://doi.org/10.1145/3594781.3594786

Sharma, P., Hannafin, M. J., 2007. Scaffolding in technology-enhanced learning
environments. Interactive Learning Environments 15, 27–46. https://doi.org/10.
1080/10494820600996972

Slack [WWW Document], n.d.. Slack is your productivity platform | Slack. URL
https://slack.com/

Taylor, C., Spacco, J., Bunde, D. P., Butler, Z., Bort, H., Hovey, C. L., Maiorana,
F., Zeume, T., 2018. Propagating the adoption of CS educational innovations,
in: Proceedings Companion of the 23rd Annual ACM Conference on Innovation
and Technology in Computer Science Education, ITiCSE 2018 Companion.
Association for Computing Machinery, New York, NY, USA, pp. 217–235. https:
//doi.org/10.1145/3293881.3295785

Visual Studio Code [WWW Document], n.d.. Code editing. Redefined. URL https:
//code.visualstudio.com/

Wood, D. J., 1976. The role of tutoring in problem solving. Journal of Child
Psychiatry and Psychology 17, 89–100.

Ying, K. M., Boyer, K. E., 2020. Understanding Students’ Needs for Better
Collaborative Coding Tools, in: Extended Abstracts of the 2020 CHI Conference
on Human Factors in Computing Systems, CHI EA ‘20. Association for
Computing Machinery, New York, NY, USA, pp. 1–8. https://doi.org/10.1145/
3334480.3383068

https://doi.org/10.1145/3453165
https://doi.org/10.1145/3453165
https://www.piazza.com
https://www.piazza.com
https://doi.org/10.1207/s15327809jls1303_2
https://replit.com/
https://doi.org/10.1145/2037276.2037278
https://doi.org/10.1145/2037276.2037278
https://doi.org/10.1145/3594781.3594786
https://doi.org/10.1080/10494820600996972
https://doi.org/10.1080/10494820600996972
https://slack.com/
https://doi.org/10.1145/3293881.3295785
https://doi.org/10.1145/3293881.3295785
https://code.visualstudio.com/
https://code.visualstudio.com/
https://doi.org/10.1145/3334480.3383068
https://doi.org/10.1145/3334480.3383068

	A Framework for Developing Collaborative Community Building Tools for Novice Computer Science Students
	INTRODUCTION
	Motivation
	Necessity of a Universal Collaborative Community Building Tool: The Foundation for a Solution

	RELATED WORK
	RESULTS
	Elements of a Framework for Developing Collaborative Community Building Coding Tools
	Developing a Framework-Based Collaborative Community Building Coding Tool

	METHODS
	CONCLUSION
	FUTURE WORK


