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ABSTRACT

While artificial intelligence (AI) has transformed the planning, design, construction,
and operation of physical infrastructure and spaces, it has also raised concerns
about algorithmic bias, data privacy, and ethical use in built environment decision-
making. Addressing these issues is crucial for designing, developing, and deploying
trustworthy AI systems that promote human safety, infrastructure security, and
resource allocation. This paper reviews trust issues in AI through the lens of several
built environment decision scenarios, e.g., weather prediction, disaster mitigation and
response, urban sensing, and bridge health monitoring. It then outlines a framework
to formalize trust, aiding researchers, policymakers, and practitioners in designing AI
systems that serve societal interests.
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INTRODUCTION

Recent advancements in artificial intelligence (AI) have sparked new debates
on issues related to skepticism and mistrust in technology and automation.
If we envision a future where humans and intelligent agents will be working
alongside each other to solve complex problems at the interface of the society
and the built environment, then the AI systems that enable those agents must
be designed, developed, and deployed with careful consideration for certain
principles to ensure that they are respectful to humans and serve the collective
good, thus fostering genuine trust in their capabilities.

To date, the literature on trust in AI systems remains sparse in the built
environment and its various subfields. For example, an analysis of 490
articles published in 1985–2021 revealed that trust in AI systems in the
context of architecture, engineering, and construction (AEC) applications
was not studied before (Emaminejad et al., 2021). In another study, involving
the review of 102 articles, it was reported that the literature on trust in
AI was fragmented and primarily focused on examining trust formation in
experimental settings (Lockey et al., 2021). In this paper, we utilize real-
world decision-making cases from the built environment domain to discuss
how trust in AI may influence the quality and timeliness of resulting decision
outcomes. Ultimately, we present a conceptual framework for convergent and
informed discussions on this topic.
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BUILDING TRUST IN AI SYSTEMS

To better understand the dynamics of acceptance and adoption of a
technology intended to support and improve human decision-making, it
is critical to first differentiate between trust and trustworthiness. Trust in
technology is the subjective willingness of a person or group to rely on
that technology (Nickel, 2012). This behavior can be driven by factors
such as past experiences, reputation, and perceived reliability. This notion
of trust, however, excludes critical considerations, such as the potential
biases or limitations of the technology, intentions of its developers, and
broader societal implications of its use. On the other hand, trustworthiness is
concerned with the inherent qualities of the technology itself, encompassing
aspects such as transparency, reliability, integrity, security, and ethical design
(Department of Commerce, 2018). While trust may be gained or lost based
on perceptions and experiences, trustworthiness requires a deeper analysis of
technology’s integrity and its alignment with ethical principles.

The same interplay must be considered in discussions surrounding the
use of AI models for decision-making. Let’s consider the application of AI
in weather prediction. Trust in AI-driven outcomes, in this case, involves
individuals relying on the accuracy and reliability of the model to make
informed decisions, such as planning outdoor activities or preparing for
severe weather events. For instance, people may trust a weather forecasting
app to provide timely and accurate predictions based on positive past
experiences or recommendations from meteorological experts. However,
this trust can be easily challenged if (even a few) predictions deviate from
actual weather conditions or fail to account for unforeseen phenomena
(Burgeno and Joslyn, 2020). On the other hand, trustworthiness in AI-
driven outcomes involves considerations for system’s overall reliability,
robustness, transparency, and ethical operation. A trustworthy weather
prediction system would be built on AI algorithms trained on vast,
representative, and high-quality historical data, thus enabling accurate and
timely forecasts across various temporal and spatial scales. Additionally,
transparent communication about system’s methodologies, limitations, and
uncertainty estimates enhances its trustworthiness by empowering users to
understand and interpret the predictions effectively. Thus, while building
trust is undoubtedly essential for encouraging acceptance and adoption of
AI systems, it must be supported by a demonstrable trustworthiness of
such systems to ensure sustained and responsible use. Failing to prioritize
trustworthiness can lead to misplaced or eroded trust over time, particularly
when unforeseen decision-making problems or ethical dilemmas arise.

The Circle of Trust: Where User Perception Meets System Capacity

In this paper, to describe trust in an AI system, we adopt the definition by the
National Institute of Standards and Technology (NIST), an agency tasked
with promoting U.S. innovation and industrial competitiveness. According
to NIST, trust in an AI system is shaped by two interconnected elements:
inherent user’s characteristics, i.e., user trust profile (UTP), and perceived
system trustworthiness (PST) (Stanton and Jensen, 2021). UTP captures
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an individual’s predispositions, personal/cultural background, beliefs/values,
prior experiences, and potential biases that influence their willingness to trust
AI. For instance, high propensity to trust in technology may lead a person to
rely more on AI decisions without questioning their validity, while those with
a skeptical outlook may exhibit more caution and scrutiny. PST, on the other
hand, refers to the user’s assessment of the performance of the AI system. For
example, a system that consistently delivers precise results, provides clear
explanations for its decisions, and prioritizes data privacy and user safety is
likely to be perceived as more trustworthy.

Figure 1 is a graphical representation of the interplay between UTP and
PST in the circle of trust. Here, blind trust characterizes a scenario where
user’s reliance (if any) on AI outputs is achieved without proper consideration
for system flaws or limitations. Conversely, illusory trust denotes a perceived
sense of reliance in the AI system, despite its actual performance falling
short of trustworthiness expectations. Reluctant trust reflects a cautious
acceptance of AI recommendations or outputs, tempered by skepticism or
reservations about their accuracy or efficacy. Lastly, assured trust pertains
to a state of complete confidence in the capabilities of an AI system that
is perceived highly trustworthy, where users rely extensively on its outputs
without hesitation. While the initial trust may fall within any of these four
areas, further modifications in the underpinning components of perceived
trustworthiness or user’s internal traits can lead to adjusted levels of trust.

Figure 1: The circle of trust: Interplay between user trust profile (UTP) and perceived
system trustworthiness (PST). The circular arrow implies the process of trust
calibration.

In the built environment, where decisions are consequential to people
and infrastructure, navigating the complexities of trust in AI-assisted
decision-making is even more significant due to its implications on human
safety, infrastructure security and integrity, and resource allocation. Within
this context, blindly trusting flawed AI recommendations can lead to
suboptimal outcomes or catastrophic consequences. Illusory trust may result
in stakeholders overlooking potential risks or inaccuracies in AI analyses,
potentially risking the integrity and safety of built structures or urban
environments. Reluctant trust highlights the need for careful validation
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and verification of AI outputs, particularly in scenarios where human lives
or large-scale investments are at stake. Finally, achieving ensured trust
in AI systems requires not only robust performance and reliability but
also transparent communication and accountability mechanisms to instill
confidence in users.

How Does the Performance of an AI System Contribute to Trust?

According to NIST, from a technical perspective, the performance of an AI
system must adhere to at least nine metrics if it is to be trusted. These include
accuracy, reliability, resiliency, objectivity, explainability, accountability,
security, safety, and privacy. When aggregated, these nine metrics constitute
what is referred to as the perceived technical trustworthiness (PTT) (Stanton
and Jensen, 2021). Table 1 lists PTT metrics and their common definitions in
various domains and the literature.

Table 1. Definition of system characteristics that drive perceived technical
trustworthiness.

Metric Definition

Accuracy How often the model correctly predicts the expected outcomes.
Reliability How consistent and stable the model can perform in multiple runs.
Resiliency How well the model can perform in a changing, deteriorating, or partially

invisible environment.
Objectivity How faithful (bias-free) model outcomes are to real-world facts.
Explainability How well the model can explain why certain predictions are made.
Accountability How closely model design, development, and deployment comply with laws

and standards to ensure the proper functioning.
Security How effective model authentication, data encryption, and access controls are in

protecting data confidentiality, maintaining data integrity, and ensuring
reasonable data availability.

Safety How well the model is equipped to prevent accidents, misuse, or other harmful
consequences.

Privacy How well the model adheres to the guidelines around acquisition, analysis, and
use of personal data lawfully, fairly, and transparently.

Depending on the problem context, some metrics may outweigh others.
For instance, when using an AI system for stability design of slopes of rock-
fill dams or embankments, reliability is a major concern due to the risks
associated with slope failure, e.g., landslides or slope collapse (U.S. Army
Corps of Engineers, 2003). Thus, an assistive AI system must be highly
accurate in predicting potential failure mechanisms and assessing the factors
contributing to slope instability. Likewise, reliability is essential to ensure that
AI predictions align closely with real-world observations and can be relied
upon for making critical engineering decisions, such as slope reinforcement
or land use planning. Moreover, resiliency is crucial in this design context
to account for uncertainties and variations in environmental conditions, e.g.,
changes in rainfall patterns or geological factors. The AI system should be
resilient to these fluctuations by continuously updating its predictions and
recommendations based on new data or changing circumstances to maintain
the slope stability and safety over time. Explainability is also significant
in this context, as designers and engineers must understand the driving
factors and assumptions of the AI recommendations. An AI system that
provides clear explanations for its analyses and decisions enables users to
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validate the results, identify potential limitations or sources of bias (e.g.,
favoring certain geological formations, historical landslide occurrences, slope
stabilization measures in certain regions or terrain types), and make informed
adjustments to slope stabilization strategies. Lastly, accountability ensures
that the responsible parties are held liable for the design decisions made based
on AI outcomes, leading to responsible and risk-aware engineering designs
(Novelli et al., 2023).

Changing the problem context or parameters may alter the relative
importance of the above metrics. For instance, in the immediate aftermath
of a major flood event, an AI system used for coordinating emergency
response must demonstrate high reliability in providing accurate information
about the extent of damage, resource availability, and evacuation routes
(Hillin et al., 2024). Similarly, resiliency becomes critical to ensure that
the AI system can continue to function effectively despite disruptions in
communication networks or infrastructure damage. In contrast, during
the recovery and rebuilding phase, factors such as explainability and
accountability may take on greater significance. For example, stakeholders
involved in reconstruction efforts may require transparent explanations from
the AI system with respect to the prioritization of resources, allocation of
funds, and long-term planning decisions (Bari et al., 2023). Furthermore,
accountability mechanisms are essential to ensure that AI decisions align
with ethical and moral considerations, while serving the best interests of the
affected communities. Therefore, the assigned weight to each performance
characteristic may shift throughout the disaster management cycle, reflecting
the evolving priorities and challenges faced in the real-world decision-making
context.

How Does User Experience With an AI System Contribute to Trust?

The PTT metrics described in the previous section are only necessary but not
sufficient for trust. Ultimately, the user’s own experience with the AI system
contributes to the formation and calibration of trust. Usability, a funda-
mental aspect of user experience (UX), comprises three key components,
namely efficiency, effectiveness, and satisfaction (Stanton and Jensen, 2021).
Efficiency is a measure of task completion time and overall completion time,
effectiveness quantifies the number of errors encountered or the quality of
task output, and user satisfaction deals with factors such as the level of
frustration, engagement, or enjoyment experienced by users when interacting
with the system (Frøkjær et al., 2000). If we assume that PTT and UX follow
independent probability distributions, then their aggregate contribution to
PST can be described as PTT×UX.

Additionally, the literature suggests that trust and credibility may depend
on surface features of the system interface even if they are not linked to
the true capabilities of the system (Briggs et al., 1998). Therefore, for an
intelligent systemwith anthropomorphic characteristics, relatability may also
play a role in user satisfaction. An experiment with 111 participants revealed
that presenting a virtual driver with human characteristics enhances human
trust in the driving simulator (Verberne et al., 2015). There is, however,
a delicate balance between the humanness of the AI system and the user’s
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emotional or psychological response as a precursor to trust. Specifically,
research warns against the uncanny valley effect when the technology’s
resemblance to a human is close but not quite perfect, potentially leading
to feelings of unease or discomfort in users and reduced user satisfaction
(Troshani et al., 2021).

Previous work has examined methods to obtain a single UX score by
combining individual UX components (Table 2). These methods, with some
modification, can be utilized to assess the usability and user experience of
an AI system, identify areas for improvement, and prioritize enhancements
to increase user satisfaction and efficiency. The system usability scale (SUS),
for example, allows users to rate their agreement with a series of statements
regarding the system’s usability. User responses are then converted into a
numerical score which provides a quantitative measure of overall usability,
allowing for comparison between different systems or iterations of the same
system (Vlachogianni and Tselios, 2022).

Table 2. Methods to assess user experience when interacting with an intelligent
system.

Method Description

System usability scale (SUS) Users rate their agreement with a series of statements regarding the
system’s usability.

User experience
questionnaire (UEQ)

Evaluates six dimensions of attractiveness, perspicuity, efficiency,
dependability, stimulation, and novelty.

Usefulness, satisfaction,
and ease of use (USE)

Four items that measures perceived usefulness, satisfaction, and ease of
use of a system.

Post-study system usability
questionnaire (PSSUQ)

Evaluates the usability of software systems by assessing factors such as
system usefulness, information quality, and interface quality, among
others.

NASA task load index
(TLX)

Evaluates the mental workload associated with completing a task by
measuring six dimensions of workload, including mental demand,
physical demand, temporal demand, performance, effort, and frustration.

User interface satisfaction
(QUIS)

Assesses user satisfaction with specific aspects of a system’s user
interface, including screen design, terminology, and system capabilities.

ETHICAL CONSIDERATIONS IN THE DESIGN OF AI SYSTEMS

Beyond technical aspects and user experience, a trustworthy AI system should
be also legal (i.e., adhere to all applicable laws and regulations) and ethical
(i.e., align with ethical principles and moral standards). Together, these
aspects must be upheld throughout the life of the AI system and apply to
developers, deployers, users, and the broader society. In the built environment
domain, ethical issues impacting both the workplace and society have drawn
some recent attention (Adnan et al., 2012; Li et al., 2022). However, these
discussions have largely overlooked the role of AI, given that the integration
of human-in-the-loop intelligent systems in many of the subfields (e.g., the
construction industry) is still in its early stages. In a review of 314 articles
published in 2017–2022, researchers listed trust as a component of ethics
when identifying nine categories of ethical issues of AI and robotics in the
AEC domains, namely job loss, data privacy, data security, data transparency,
decision-making conflict, acceptance and trust, reliability and safety, fear of
surveillance, and liability (Liang et al., 2024).
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To explain the provisions of ethical AI, let’s consider the use of AI-
powered urban sensing tools (e.g., facial recognition, license plate readers,
biometric scanners, gunshot detectors, drones, body-worn cameras) in
many smart city initiatives (Socha and Kogut, 2020; Ma, 2021). While
these systems are initially deployed to deter urban crimes and improve
public safety, they may also raise concerns about privacy infringement,
potential misuse of sensitive information, and social inequality (Helbing
et al., 2021). Within this context, the incorporation of ethical AI principles
mandate that for these intelligent systems to be fully accepted and trusted
by all stakeholders (i.e., people, businesses, law enforcement), they must
have proper safeguards such as data anonymization and encryption, limits
on data retention periods, strict access controls to prevent unauthorized
use and disclosure of data, and regular audits and reviews to assess the
system’s compliance with privacy laws and regulations. As evidenced by
this example, the application of ethical principles to the rapidly evolving
AI-society interface can be complex and subject to interpretation. It is,
therefore, imperative that potential implementation conflicts be identified
and addressed through effective engagement with all stakeholders, and
continuous evaluation and communication of tradeoffs to guarantee ethical
and responsible AI implementation.

TRUST CALIBRATION

Trust is formed over time and continuously reevaluated by the trustor. The
extent to which a trustor (i.e., human) trusts a trustee (i.e., technology) is
influenced by a host of factors, including task complexity, domain expertise,
and ethical considerations. As noted earlier, trust is defined within the
specific context of a decision-making problem. As such, over-trust or under-
trust that in one context may lead to a negative decision outcome, could
result in a positive decision outcome under slightly (or completely) different
circumstances.

In practice, for trustors with low trust resolution, a large improvement in
system capabilities may not yield a large increase in user trust. Moreover,
while some users calibrate their trust in response to immediate changes in the
context or system’s capabilities, others may wait until after observing long-
term, sustained success or failure. This sensitivity of trust to temporal changes
is referred to as temporal specificity (Benda et al., 2022). In addition, trust
calibration can vary based on the granularity of performance observations.
Trust may be calibrated in response to the success or failure of a single system
component or remain intact until a system-level failure or success is achieved.
While the former represents a high functional specificity, the latter is an
example of low functional specificity (Wintersberger, 2023). For example,
in an AI-enabled bridge health monitoring system equipped with sensors to
detect structural stress and deformation, occasional data drifts in a sensor
responsible for deck vibration measurement may lead an engineer with high
functional specificity to adjust their trust in the system. However, an engineer
with low functional specificity may reconsider their trust only in the event
of a total system failure. Together, high temporal and functional specificity
increase the likelihood that the level of trust will match the capabilities of a
particular component of the AI system at a particular time.
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CONCEPTUAL FRAMEWORK FOR FORMALIZING TRUST

In adopting an AI system for built environment decision-making,
stakeholders and beneficiaries may have different expectations about system
capabilities and limitations, which may influence their level of acceptance
and trust (Wang and Zhou, 2022). Thus, system performance should be
compared across different user groups that are on the receiving end of AI-
assisted decisions. Models trained on historical data may excel with one
group but can perpetuate social inequalities in other groups (Timmons et al.,
2023). Figure 2 outlines our eight-step conceptual framework to formalize,
calibrate, and maintain trust in AI. This framework can guide researchers,
policymakers, and practitioners in designing trustworthy AI systems for built
environment contexts.

Figure 2: Proposed framework for formalizing trust in built environment decision-
making.
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CONCLUSION

The rapid adoption of AI in our daily lives has outpaced a thorough debate
on the crucial issue of trust in AI outcomes and decisions. There is still a
need for mechanisms that can objectively establish the trustworthiness of
AI systems to increase user adoption and acceptance of technology. In built
environment applications, understanding trust in AI systems is important to
ensure the reliability, safety, and acceptance of such systems that have major
societal implications. By investigating trust dynamics, designers, architects,
and engineers can identify factors that influence trust, implement strategies
to mitigate distrust, and ultimately promote confidence and maximize the
potential benefits of AI in built environment decision-making. Defining
and realizing trustworthy AI is complex, and diverse perspectives exist on
what constitutes trustworthy AI, with evolving technical and non-technical
aspects, and differing ethical and regulatory priorities (Alzubaidi et al., 2023).
Through the lens of several built environment problem contexts (weather
prediction, embankment slope stability, disaster mitigation and response,
urban sensing, bridge health monitoring), this paper discussed key aspects of
designing trustworthy AI, and examined the interplay between user trust and
system trustworthiness in such systems. Additionally, the discussion on trust
calibration highlighted the influence of trust resolution as well as temporal
and functional specificity in the formation and adjustment of trust in AI
systems. Lastly, a conceptual framework was proposed to formalize trust in
AI and guide researchers, policymakers, and practitioners in the design and
deployment of trustworthy AI systems for built environment applications.

While the study of human trust in AI systems in multi-person teams was
outside the scope of this paper, in some decision-making contexts, human
interaction with AI occurs within a multi-person group that shares role and
responsibility for managing the AI system, and exhibit interdependencies
in workflows, goals, and outcomes (Ulfert et al., 2024). With the goal
of creating a convergent understanding and a unified model of trust for
engineering applications, the focus of this paper, however, was on the
fundamental relationship between the characteristics and experiences of a
single human trustor, and the trustworthiness of an AI system.
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