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ABSTRACT

Decision-making tasks such as hacking may involve risk and/or uncertainty, contingent
upon the hackers’ knowledge and expectations of the defensive measures in place.
Since memory systems can be activated or inhibited depending on whether a
decision is made under uncertainty or risk (Lu et al., 2022; Nicholas et al., 2022),
we first investigate how such memory settings and systems affect the accuracy of
predicting real-world behaviors using datasets collected under implicit and explicit
learning schemes. The findings show an effect of memory systems and settings on
the predictive abilities of the models. Additionally, we examined how augmenting
reinforcement learning agents with similar memory systems and settings shapes their
behaviors when they traverse environments with (un)certain observation spaces. The
results point out differences in agents’ performance which was found to be influenced
by many factors, including the memory systems and settings.

Keywords: Deception, Uncertainty, Risk, Reinforcement learning, Observation, Memory
systems

INTRODUCTION

A decision-making process involves internal cognitive processes like
perception, attention, and memory (Prezenski et al., 2017) and external
factors (e.g., salient features (Cranford et al., 2020), which play a role
in activating or inhibiting internal cognitive processes, leading to varying
degrees of (un)certainty in one’s estimates. Although risk entails some
uncertainty, it should be noted that risk and uncertainty are two distinct
conditions (De Groot and Thurik, 2018). Uncertainty can be defined as
either the complete lack of knowledge or the presence of limited knowledge
of the future, the past, or the current events, while risk indicates that the
decision-maker has accumulated knowledge and experiences sufficient for
an informed decision (see Figure 1). Generally, in a real-world scenario, there
are three types of unknowns(Rueter, 2013; Gaskett, 2003), risk, uncertainty,
and indeterminacy, ordered from the easiest to the hardest to tackle.

As behavior is heterogeneous amongst individuals, developing a defense
strategy that is effective against the various types of attackers requires the
defense technology to satisfy an anti-compromise security state. One way
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to achieve this at the technical level is by converting the hacking task
from a decision-under-reducible-uncertainty problem to a decision-under-
indeterminacy problem. This approach can be operationally expensive and
may interfere with normal systems operations. Another alternative is to
minimize the indeterminate nature of hackers’ tendencies and to use such
tendencies to plan deception placement strategically.

The first part of this research explored the impact of various memory
systems and settings on predicting future decisions using datasets of
participants performing gambling tasks involving implicit (Iowa Gambling
Task) and explicit (sure/gamble) learning rules. The second part investigated
how RL attackers with various risk-taking tendencies modeled using various
memory systems and settings (e.g., impairments) approach hacking tasks.
To summarize, this work analyzed the role memories play in human and
RL attackers’ decisions since how and when past/recent experiences are
encoded and retrieved (i.e., what memory gets activated/inhibited, how
activation/inhibition occurs) could be detrimental to how future experiences
unfold.

Figure 1: A decision-making process. Decisions under temporal uncertainty could be
reduced into decisions under risk after an attacker has accumulated enough knowledge
and experience.

PART 1: A PRELIMINARY EXAMINATION OF THE IMPACT OF
MEMORY ON PREDICTING REAL-WORLD BEHAVIOR

To analyze the effect of memory systems and settings on predicting real-
world behavior, we examined the predictive ability of models calibrated to
simulate different memory systems using real-world psychological datasets.1

The preliminary analysis of the role memory systems and settings play in
shaping real-world behavior was conducted using gambling datasets because
the tasks used to generate such datasets share some similarities with hacking
activities. That is, hackers perform hacking tasks under an assumption of risk
and/or uncertainty, depending on their knowledge and expectations about
cyber defenses.

1The memory settings and systems are adopted from https://github.com/doerlbh/HumanLSTM (Lin et al.,
2022) and https://github.com/qihongl/learn-hippo (Lu et al., 2022).

https://github.com/doerlbh/HumanLSTM
https://github.com/qihongl/learn-hippo
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Method

We examined the role of different memory models in predicting the behavior
of human participants using datasets obtained from two different gambling
tasks; we note that in the Iowa gambling task, the game rules are implicit and
could be learned over time, while the other task is non-dynamic and provides
explicit information about expected outcome probabilities.

Results and Discussion

Since the gambling datasets were relatively small, we utilized a 5-fold
cross-validation approach. Because samples were selected randomly, a cross-
validation approach can provide a reliable measure of the fit of the models
(Hawkins et al., 2003). All gambling datasets were split into 70% for training
and 30% for testing. The metric used to evaluate the models is the RMSE, a
commonly used metric to evaluate regression problems.

The Case of Implicit Learning

Effects of Memory Models: It is established that individuals’ tendencies
toward risk and uncertainty differ across unique populations (Busemeyer and
Diederich, 2010; Wallis, 2007). Since memory plays a role in shaping the
behavior of individuals, we analyzed the ability of models augmented with
different memory systems and settings to predict subsequent advantageous
and disadvantageous actions and examined how different populations
approach such actions. See Figure 2.

Figure 2: The performance of healthy and pathological gamblers.

Table 1 shows the results of evaluating different memory models
trained using the Iowa gambling datasets. As can be seen in Table 1,
an approximately 57% improvement in the prediction accuracy of the
DM memory system, compared to the baseline model was observed. I
consider a 30% decrease in the RMSE values between a baseline and a new
model to be significant, following (Nau, 2014). This result is consistent
and holds for healthy participants only. When the source of a decision
impairment is a deficit in memory functions, the difference between healthy
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and unhealthy (non-addict) participants’ use of past and recent experiences is
more pronounced (Busemeyer and Stout, 2002). Such a finding might explain
why a model augmented with distant memory, as opposed to recent memory,
performed better on healthy participants’ datasets but not on pathological
gamblers’ datasets since memory deficits may cause individuals to rely more
on recent memories (Busemeyer and Stout, 2002).

For the pathological gamblers’ datasets, only the first-order vector auto-
regressive model performed better than other memory models. Table 1
shows a significant improvement in the predictive ability of the VAR model
compared to the baseline, with an approximately 38.65% decrease in the
RMSE value. None of the memory systems or settings where the memory
gate value was fixed (unconditional) could predict pathological participants’
behaviors. Likewise, the predictive abilities of the models were consistent
even when the settings were adjustable in the WMDM condition, resulting in
the vector auto-regressive model being the best performing for pathological
gamblers’ datasets but not for the healthy individuals’ datasets.

The Case of Explicit Learning

Effects of Memory Models: We expected the vector auto-regression model
to outperform other non-linear models due to its important characteristics
(i.e., its reliance on the most recent values) (Brooks and Sokol-Hessner, 2020;
McCormick and Telzer, 2018). However, the performance of the vector
auto-regression model was the worst compared to all other memory models
and settings examined. One reason that could explain the performance
degradation is the choice of the variables used to fit the model, which left
out important characteristics of risky decisions. That is, in a risky decision-
making task, participants are expected to process gains and losses differently.
In the present study, we used two variables (gamble and sure), which provided
limited information on how the magnitudes of losses and gains would affect
decisions.

Table 1. RMSEs of models equipped with different memory systems and settings.

Implicit Learning Explicit Learning

Mem. System Episodic Mem Gate RMSE Mem. System Episodic Mem Gate RMSE

Healthy Participants DM Capacity: 4 items

Baseline (LSTM) - 0.181 Baseline (LSTM) - 0.290
DM 0.25 (open) 0.077 DM 0.25 (open) 0.407
WMDM 0.0 (closed) 0.114 PDM 0.25 (open) 0.294
WMDM 0.25 (open iff t<=50). 0.134 NWM - 0.359
PDM 0.25 (open) 0.1 VAR(1) - 0.457
NWM - 0.104 WMDM 0.0 (closed) 0.219
VAR(1) - 0.154 WMDM 0.25 (open) 0.126

Participants with Pathological Tendencies (addicts) DM Capacity: 14 Items

Baseline (LSTM) - 0.414 Baseline (LSTM) - 0.297
DM 0.25 (open) 0.401 DM 0.25 (open) 0.209
WMDM 0.0 (closed) 0.391 PDM 0.25 (open) 0.339
WMDM 0.25 (open iff t<=50). 0.403 NWM - 0.353
PDM 0.25 (open) 0.414 VAR(1) - 0.450
NWM - 0.340 WMDM 0.0 (closed) 0.314
VAR(1) - 0.246 WMDM 0.25 (open iff t<=50). 0.252

WMDM 0.25 (open) 0.339
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PART 2: AN ANALYSIS OF THE ROLE OF MEMORY IN SHAPING RL
AGENTS’ BEHAVIOR IN (UN)CERTAIN ENVIRONMENTS

In this part, we aim to analyze how the agents’ behavior when equipped
with similar memory systems and settings changes if they interact with
environments characterized by reduced, noisy, masked, and controlled
observation spaces.

Method

We used a modified version of CyberBattleSim (CBS), a high-level simulation
environment, that facilitates evaluating attack strategies through simulating
multi-stage attacks on network graphs (Microsoft, 2021). To analyze the
role memory plays in an RL agent’s decision, we replaced the simple linear
layers of a Deep Q-learning (DQN) algorithm with an LSTM layer, where
memory systems and settings are adjusted to model unique behaviors. The
implementation of memory models and settings follows the same procedures
used in implementing the non-linear models discussed in Part 1. Additionally,
past experiences are sampled from a replay buffer in a randomized or
prioritized fashion. While experiences are replayed uniformly (i.e., without
any criterion) in the case of randomized sampling, with prioritized sampling,
samples with high TD errors (e.g., unfamiliar or new experiences) get
replayed (Schaul et al., 2016). For prioritized and randomized sampling,
training with minibatches of size 32 is performed over 400 episodes and 5000
steps; the DM capacity is capped at ten. For theWMDM/RMmodel, retrieval
from DM is allowed if and only if the timestep is a multiple of 16.

In the present study, we note that noisy, masked, and reduced observations
were applied to a portion of the network. Additionally, a major difference
between reduced, masked, and noisy observation spaces is that in an
environment with a reduced observation space, while observations are
unpredictable, the agents are not penalized. On the other hand, noisy and
masked observations are unpredictable, but the agents are penalized if the
observation does not lead to a true state. Moreover, the main difference
between masked and noisy observations is that noisy observations are
probabilistic, while masked observations are not. That is, when observations
are masked, part of the observation returned is always hidden, forcing the
agent to try different combinations until it succeeds.

Results and Discussions

The interplays between attacker’s types, memory models, types of
experiences, and observation spaces
We assumed models with the ability to learn or preserve long-term and/or
short-term dependencies and models that cannot learn to vary in their
approach to the unique observation spaces. More specifically, we expected
models that are capable of learning or preserving short-term and long-term
dependencies to perform better in uncertain environments, since learning
from past experiences can improve learning efficiency (Minsky, 1961).

To evaluate the following hypotheses, we used two performance metrics,
some of which are typically recommended for evaluating reinforcement
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learning algorithms (Chan et al., 2020; Colas et al., 2019): 1) the average
cumulative reward, which describes the agent’s overall performance, 2)
the winning rate, which is the percentage of episodes in which the agent
achieved the winning requirements. We used Welch’s t-test to compare the
average cumulative rewards between different types of agents interacting
with different observation spaces. The winning rate is used as an additional
descriptive metric to evaluate the performance of agents.

Hypothesis: Agents equipped with episodic memory and recent memory
(WMDM) perform better than similar agents where retrieval from episodic
memory is disabled.

When sampling is randomized, the success rate of an agent equipped with
episodic and recent memory was higher (60.25%) than that of an agent
equipped with recent memory only (24.5%) when the agents traversed an
environment with a noisy observation space. If the observation space is
controlled, an agent equipped with episodic and recent memory performed
worse (the success rate = 38.75%) compared to an agent that is equipped
with recent memory only (the success rate = 63.5%).

On the other hand, when traversing an environment with a controlled
observation space and if sampling is prioritized, an agent equipped with
episodic and recent memory performed better (the success rate = 75%) than
an agent equipped with a recent memory only (the success rate = 42.25%).
While prioritized sampling improved the performance of agents in a
controlled environment, it did not enhance the performance of agents,
irrespective of the memory settings (WM with or without episodic memory)
if the agent traversed an environment with a noisy observation space.

Finding: For a satisficing agent interacting with a noisy observation space,
episodic and recent memories have a positive effect on the success rate but
a negative effect when an agent is interacting with a controlled observation
space only if experiences are drawn randomly.

Table 2. Statistical test results.

The Impact of a Maximizing Strategy

Sampling Obs space WMDM (retrieval enabled X retrieval disabled)
randomized Welch’s t-test of the average cumulative rewards

noisy −176.651***
control 16.990***
masked 15.128***
reduced −1.136

prioritized
noisy −238.146***
control 13.689***
masked −68.065***
reduced 1.776

(Continued)

Hypothesis: The type of experiences the agent learns from has an impact
on the agent’s performance. We note that the type of experiences utilized
affects agents’ risk propensities as noted in (Schaul et al., 2016).
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Table 2. Continued

The Impact of a Satisficing Strategy

randomized
noisy 121.308***
control −18.539***
masked 15.832***
reduced −1.854

prioritized
noisy −1.399
control 63.527***
masked 15.634***
reduced 2.919***

*p<0.1, **p<0.05, ***p<0.01

Finding: Drawing from unseen and novel experiences (i.e., prioritized
sampling) degrades the performance (in terms of the averaged cumulative
rewards) of models equipped with episodic memory, specifically if the agent is
interacting with an environment characterized by a noisy observation space.

Table 3. Statistical test results – Effects of experiences.

Mem System Obs Space Randomized X Prioritized

DM (maximiser) Welch’s t-test
noisy 8.673***
control 6.761***
masked –66.495***
reduced –0.396

DM (satisficer)
noisy 4.096***
control 3.093***
masked –32.795***
reduced –0.539

WMDM (maximizer)
noisy –2.359**
control 18.624***
masked 64.044***
reduced 0.4955

WMDM (satisficer)
noisy 322.778***
control –48.764***
masked –39.346***
reduced –0.625

PDM (maximizer)
noisy –
control –3.683***
masked –25.280***
reduced 0.175

PDM (satisficer)
noisy 28.215***
control –33.089***
masked –14.190***
reduced 0.7451

*p<0.1, **p<0.05, ***p<0.01

The results above showed that performance improvement is contingent
upon multiple factors. More specifically, the type of strategy the agents
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follow (i.e., satisficing or maximizing) and the underlying attributes of the
observation spaces influenced the agents’ behavior in unique ways. Another
factor affecting agents’ performance is the type of memories stored in episodic
memory, which includes either seen or unseen experiences. We note that
episodic memory consists of a set of cell states whose content is scaled
based on the relationships between the current cell state, the retrieved cell
state, and the action selected. Thus, adding the value of the action or
using it as a criterion to retrieve relevant memory may change the results
dramatically. While past experiences are expected to improve learning, it
should be mentioned that some studies noted a possible negative effect of
prior knowledge on agents’ performance, where a random agent is expected
to perform better (Doshi-Velez and Ghahramani, 2011; Dubey et al., 2018).
Our findings, however, showed that equipping agents with prior knowledge
in the form of episodic memory does not have a consistent effect across the
different types of observation spaces.

CONCLUSION

Existing security studies analyze risky behaviors by either engaging healthy
populations, populations whose health conditions are unknown, or by using
models capable of predicting a typical human behavior. However, cyber
deviance or cybercrimes are found to be prevalent in atypical populations
whose risk propensities differ from that of the general population,
emphasizing the importance of considering such populations.

The present study’s findings revealed that the condition under which a
decision is made (i.e., decision-under-risk vs. decision-under-uncertainty)
and the population involved are significant factors that need to be
considered if better predictive models are to be designed. We demonstrated
that predicting pathological gamblers’ behavior and healthy participants’
behavior accurately requires unique memory systems and settings. Likewise,
the behaviors of individuals engaged in implicit or explicit learning schemes
cannot be accurately predicted using a singular model or a memory system.

For cybersecurity research, examining the inter-plays between attackers’
strategies, the root causes of attackers’ behaviors (e.g., memory impairments,
motivations), and the environments with which attackers interact is highly
challenging, especially if human attackers are to be involved. Thus, we
analyzed the impact of augmenting reinforcement learning agents, whose
underlying learning strategies resemble that of humans, with similar memory
systems and settings. The findings showed that agents’ behavior is shaped by
the underlying learning strategy, the observation space traversed, and the type
of experiences and memory systems and settings used to guide the learning
process.
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