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ABSTRACT

This paper presents an intelligent strategy model for counter-unmanned aircraft
system (C-UAS) command and control, addressing challenges like diverse intelligence
sources, high agility requirements, and complex threat patterns. It leverages human-
computer collaborative decision-making, grounded in the OODA loop theory, and
integrates informatized, networked, and intelligent systems to enhance security,
accuracy, and timeliness in C-UAS. The model structures the task into four stages:
Multidimensional Intelligence Comprehensive Situational Awareness, Spatiotemporal
Target Locating, Human-Machine Collaborative Decision-making, and Effectors
Coordinated Actions. Practical applications were tested in an integrated system
with diverse equipment, implementing methods like multi-sensor collaboration and
multi-target tracking. Field exercises in three scenarios--close-range, multi-directional
swarms, and mixed-strategy UAV attacks--demonstrated the system’s effectiveness in
detecting and intercepting threats, affirming its operational capabilities significantly
enhanced by effective human-computer collaboration.
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INTRODUCTION

In recent years, the threat posed by unmanned aircraft systems (UASs)
has escalated significantly. Particularly in contexts such as terrorist attacks,
critical infrastructure protection, and urban low-altitude defense, UASs
have demonstrated profound implications for future battlefield tactics and
strategies (Wang et al., 2021). To deal with these threats, counter-UAS
technology has rapidly advanced, including protective equipment, defense
systems, and command and control technologies (Zhang & Zhang, 2018).
This paper focuses on the domain of counter-UAS command and control
technology, exploring innovative command and control architectures to
significantly enhance the effectiveness of counter-UAS measures based on the
existing mainstream anti-drone equipment.
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Based on the analysis of practical defense cases and application scenarios,
legacy command and control structures of counter-drone systems face four
primary challenges:

1) Challenge of Detection and Tracking

Drone targets, typically characterized as low-altitude, slow-speed,
and small (LSS), present significant challenges for continuous detection
and tracking when operating at low and ultra-low altitudes. The
complex electromagnetic environment at these altitudes complicates sensor
performance. Drones can easily hide in sensor blind spots created by
geographical obstructions. Additionally, due to their size and flight patterns,
drones can be easily mistaken for common low-altitude birds or mixed up
with balloons and kites.

2) Challenge of Handling Complex Attack Modes

Current systems struggle to simultaneously handle multi-directional and
multi-target drone threats. Swarm attacks can oversaturate interception
channels of existing defense systems. Therefore, an integrated system capable
of deploying various defensive effectors is required to intercept multi-
directional and multi-wave targets (Ma & Xiaoxuan, 2020).

3) Challenge of Operational Agility and Rapid Decision-Making

The high demand for operational agility and the shortening of defense
time windows make rapid decision-making challenging. This increases
the pressure on the response time of counter-drone systems, necessitating
improved command efficiency and faster reaction times.

4) Challenge of Sustained Operational Readiness

Continuous high-intensity operation under threat conditions can lead
to operator fatigue. Enhancing the system’s automation and unattended
operation capabilities is essential to maintain effective and sustained
operational readiness.

The efficacy of C-UAS operations depends on the system’s ability to quickly
process intelligence, recognize dynamic situational changes, and deploy
combat resources accurately and efficiently. However, the traditional human-
centric command and decision-making paradigm is inadequate for meeting
these evolving needs. The application of smart technologies has become
crucial in C-UAS systems, shifting from a traditional “strong control”model
to a “strong decision-making, weak control” approach (Ma et al., 2020).
This allows commanders to accomplish tasks with simple operations, while
the system taking over decision-making duties from the users. By integrating
theories of human-computer collaboration, existing C-UAS command and
control systems are being upgraded, redefining the collaborative relationship
between humans and computers in the C-UAS mission environment.

This paper proposes a customized intelligent strategy model for C-UAS
command and control. Based on the OODA loop theory and incorporating
the characteristics of informational, networked, and intelligent systems,
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the model emphasizes human-computer collaborative decision-making
capabilities (Chen et al., 2021), aiming to meet the safety, accuracy, and
timeliness requirements of C-UAS. A comprehensive framework is designed
around the operational process, with tasks assigned between humans and
computers, to achieve efficient handling and high safety at the same time.

HCI Collaborative Command & Control Framework for C-UAS

In C-UAS missions, human-computer collaboration plays a crucial role.
Within the classic OODA loop (Observe, Orient, Decide, Act), each phase
relies on human intervention. By leveraging insights from the field of Human-
Computer Interaction (HCI), traditional command systems are optimized to
incorporate more advanced automated systems into each stage of the OODA
loop (Liu et al., 2020). This enables an effective partnership between humans
and computers to perform command and control tasks efficiently, thereby
closing the OODA loop and establishing a trustworthy human-computer
collaborative decision-making mechanism.

Figure 1: HCI collaborative command & control framework for C-UAS.

The optimized command & control strategy model provides a design
framework based on the C-UAS application process (see Figure 1).
(1) Multidimensional intelligence comprehensive situation awareness. The
fusion processing of multi-dimensional and multi-source information data
forms a comprehensive and unified human-machine situational awareness
capability. (2) Spatiotemporal target locating. Detection and identification of
intelligence information to achieve accurate positioning and stable tracking of
threat targets. (3) Human-machine collaborative decision-making. Division
of labour and cooperation between humans and machines to improve
decision-making efficiency, accuracy, and flexible adaptability. (4) Effectors
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coordinated actions. Rapid formation of a kill chain according to mission
instructions, while possessing the ability to quickly develop kill chains.

(1) Multidimensional intelligence comprehensive situation awareness
In the multidimensional intelligence comprehensive situation awareness
phase of C-UAS operations, the primary challenge addressed is the
detection of targets. Tailored to meet the demands of C-UAS detection, the
system utilizes a multidimensional sensor array to continuously perceive
and monitor UAV information. This array includes radar (R), visible
detection (V), infrared detection (I), electronic detection (E), and acoustic
detection (B), collecting environmental data and information on potential
threats. Human-computer collaboration in this stage is pivotal as machines
autonomously guide each other, automatically process, and integrate
information from various dimensions. This integration facilitates rapid
extraction of intelligence, which is then presented to human operators in an
intuitive format, forming a comprehensive basis for situational awareness
(Yang et al., 2022).

To ensure the quality and consistency of the data, all sensor data are
compiled into a multidimensional vector:

X = [R,V, I,E,B]

The Isolation Forest algorithm is employed to detect and eliminate
anomalies within the data. After a consistency check, the dataset is further
optimized:

X∗ = ConsistencyCheck(X)

Subsequently, by applying Kalman filter techniques, challenges associated
with the extraction and fusion of multi-sensor data are addressed, enhancing
the spatiotemporal correlation of the information, and improving data
usability and accuracy (Peng et al., 2020). The resulting fused dataset,
Xfused, allows the system to extract key intelligence efficiently and accurately,
significantly enhancing the response capabilities to UAV threats and
providing a reliable foundation for decision support.

(2) Spatiotemporal target locating
During the spatiotemporal target locating phase, the primary challenge
addressed is the parsing and recognition of information. The system analyzes
and understands the observed data to identify and predict potential threats,
achieving a comprehensive perception of the current environmental situation.
In the human-computer collaborative system, machines autonomously detect
target types, assist in analyzing data patterns, and predict potential UAV
behaviours and strategies. Human operators, leveraging their experience and
intuition, conduct in-depth interpretations, validate the machine’s analytical
outcomes, and clarify complex or ambiguous situations.

The YOLOmodel is used to realize drone target detection and recognition,
and combined with target candidate track (TCT) for tracking and positioning
(Unlu et al., 2019). On this basis, this paper adopts an Integrated Threat
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Detection and Tracking (ITDT) model, which utilizes real-time multi-sensor
data and historical records to analyze and predict target behaviours. Utilizing
Long Short-TermMemory (LSTM) networks, it processes motion trajectories
and behavioural patterns, enabling effective prediction and classification of
such behaviours. The ITDT model comprises four main modules: target
localization and classification, multi-target tracking, behaviour analysis, and
mission classification. These modules transform the input vector Xcombined
into the output vector Ytask, which includes comprehensive information such
as location, classification, and threat level:

Ytask = fITDT
(
Xcombined

)
This model leverages deep learning architectures and algorithms to

effectively extract key information from large datasets. It also enables
effective monitoring and rapid response to UAV activities, significantly
enhancing adaptability to complex environments and the capability to handle
potential threats.

(3) Human-machine collaborative decision-making
During the human-computer collaborative decision-making phase, an
integrated analysis of observed and oriented information is conducted to
select the most appropriate countermeasures, involving the formulation of
tactics and the selection of weapon systems. The system rapidly simulates
and evaluates different response strategies through algorithms, providing
recommended options and their predictive outcomes for a clear and concise
situational presentation to the user (Zhang et al., 2022). Additionally, the
system utilizes AI technology to learn from previous models to offer decision
support that aligns more closely with the commander’s considerations, while
the human commander is responsible for the final decision, making choices
based on tactical knowledge and battlefield conditions. To counter decision
fatigue and cognitive biases, decision-support tools are designed to simplify
the decision-making process.

A Deep Q-Network (DQN) model is established to optimize the decision-
making process:

Q (s, a)← Q (s, a) + α
[
R (s, a) + γ max

a′
Q
(
s′, a′

)
−Q (s, a)

]
where s represents the current state, a is the action taken, s′ is the new state
after the action, and a′ are possible actions in the new state.Q (s, a) represents
the utility value of the current state and action pair. The learning rate α
adjusts the speed at which new information updates old information, R (s, a)
is the immediate reward, and the discount factor γ balances the importance
of immediate rewards against future rewards.

Predictive models and algorithms provide support for decision-making,
where the system generates decision options based on predictive models,
analyzing the consequences of multiple potential plans to address the
complexities and variabilities of the battlefield environment. Further
assessment of plans Si obtained from the DQN model is conducted using
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a random forest model, which integrates learning outcomes from multiple
decision trees to provide decision support. The final decision output,
Decision, is determined by a majority voting method:

Decision = mode
{
Tree1 (Si) ,Tree2 (Si) , . . . ,Treen (Si)

}
The commander selects a decision option based on comprehensive

evaluation results, simplifying the decision process and the information
analysis process to enhance decision efficiency and human comprehension,
while returning decision-making responsibility to humans to ensure system
safety. The system continues to adjust the recommendation algorithm
through a decision feedback mechanism, based on the operator’s feedback
and subsequent results.

(4) Effectors coordinated actions
During the effector coordinated actions phase, the system executes specific
countermeasures based on the decision outcomes, such as launching
interference signals or physical interceptions. The collaborative system can
automatically control devices like electronic jamming systems or high-power
laser systems, or coordinate multiple weapons to execute tasks, while
still maintaining human operator control over critical actions. The system
provides real-time feedback on the results of actions, allowing operators
to quickly adjust or repeat the previous OODA loop. The user interface
ensures that execution of commands is both intuitive and precise, and is easily
manageable by human operators in emergency situations, providing essential
manual control options.

An integrated heterogeneous equipment networking technology model is
established to ensure seamless collaboration among different defense systems
according to battlefield requirements (Chien et al., 2019). Task scheduling
problems are solved through integer linear programming to optimize the
system allocation of various tasks:

min
∑

i∈N,j∈D

cijxij Subject to
∑
i∈N

xij = 1 ∀j ∈ D, xij ∈ {0, 1}

Here, D is the set of tasks determined by the Decision, cij represents the
cost of system i performing task j, and N is the set of all available defense
systems.

The network flow model optimizes the flow and allocation of resources:

max
∑

(u,v)∈E

f (u, v)

Subject to

f (u, v) ≤ c (u, v) ,
∑
v∈V

f (u, v)−
∑
v∈V

f (v,u) = 0

In this model, f (u, v) represents the flow of resources from node u to node
v, c (u, v) is the maximum capacity of that flow, E is the set of edges, and V
is the set of nodes.
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The system employs a user-friendly interface to provide real-time feedback
on actions, allowing operators to adjust strategies based on the latest
data. All decision results and related data are logged in a historical
database, ensuring comprehensive record-keeping. The system also conducts
ongoing monitoring of key operational areas, integrating real-time sensor
data from these areas to update and provide feedback promptly, ensuring
timely adjustments and optimization of defense measures. This continuous
monitoring and data feedback effectively close the OODA loop, enabling
the system to learn and adapt continually, thus enhancing overall defense
capabilities and safeguarding critical assets and personnel.

Figure 2: Application of human-computer collaborative command and control strategy
in the operational workflow of C-UAS missions.

To validate the effectiveness of the proposed human-computer
collaboration model, the author implemented it in a diversified and
heterogeneous C-UAS command and control system (see Figure 2) and
conducted practical exercises in a specific region to simulate real UAV
attack-defense scenarios. The experiment targeted three threat scenarios that
existing C-UAS systems generally struggle to address effectively, creating
three test environments: (1) Close-Range Surprise Raid to test the system’s
capability to handle sudden close-range single-target attacks. (2) Drone
Swarm Saturation Attacks from Multi-Direction to assess the system’s
rapid response capability against multi-directional and multi-target threats.
(3) Coordinated strikes by multiple UAVs relying on inertial navigation
to evaluate the system’s ability to accurately handle continuous complex
intentions and coordinated attacks by multiple UAV types.

The purpose of the experiment was to test whether the C-UAS command
and control system, optimized through the human-computer collaboration
model, could accurately command subordinate detection sensors to timely
discover and identify UAV targets, and control subordinate weapons to carry
out interception and countermeasures. During the tests, the system’s detection
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time, detection accuracy, decision response speed, and defensive effectiveness
were recorded to assess the system’s usability, timeliness, and flexibility.

Result & Discussion

In the three tests, the system successfully coordinated sensors such as
radar, photoelectric, and radio frequency (RF) detection devices, and was
able to integrate these to generate high-precision target trace information.
It effectively directed multiple types of weapons such as RF interference,
GNSS spoofing, high-power lasers (HPL), micro-missiles, and intercepting
drones to carry out interception strikes. The system successfully detected
and intercepted all 17 flights. The experiments thoroughly validated
the C-UAS system developed based on human-computer collaboration
concepts from various aspects including system response speed, collaborative
detection capability, multi-target handling, and complex intention response
capabilities. The results of the experiments are summarized in Table 1.

Table 1. Summary of experiment results.

Metric Test 1 Results Test 2 Results Test 3 Results

Initial detection time 5s 13s 12s
Initial detection distance 2.85km 2.5km 2.7km
Time to identify target 15s 19s 22s
Distance at target identification 2.5km 2.2km 2.5km
Number of targets 2 12 3
Tracking precision <3m <3.6m <3m
Frequency band information Available Available Available
Countermeasures RF Jamming RF Jamming,

Laser,
Interceptor
Drones

Jamming, GNSS
Spoofing, Laser,
Interceptor
Drones

Total handling time 42s 131s 211s

Close-Range Surprise Raid
The system detected the initial target direction within 5 seconds of takeoff at
1.85 km, stabilized target tracking within 8 seconds with a tracking precision
of no more than 3 meters, identified the target within 15 seconds at 2.5 km,
made command decisions within 2 seconds, and intercepted the target within
30 seconds through electronic interference, culminating in the target’s fall
within 35 seconds from takeoff. During this testing process, the ability of the
human-computer collaboration system to integrate data frommultiple sensor
sources was also evaluated. The integrated data, compared to that from
individual sensors, more closely approximated actual data and significantly
improved localization accuracy (see Figure 3). This integration exemplifies
the advanced capabilities of the human-computer collaborative system in
enhancing the accuracy and reliability of sensor data through sophisticated
data fusion techniques.
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Figure 3: Comparison of data fusion results from the human-computer collaborative
system with data from a single sensor (radar).

Swarm Saturation Attacks From Multi-Direction
The system detected anomalies from the first batch of targets within 4 seconds
of their takeoff, identified the targets after 13 seconds at 2.5 km, recognized
the targets within 7 seconds at 2.2 km, and confirmed them as multi-cluster
targets from three directions after 26 seconds, making disposal decisions for
each direction. This included an on-the-fly adjustment of one decision plan,
ultimately successful in intercepting all 12 targets from all directions within
a total duration of 131 seconds, with detection precision not exceeding 3.6
meters.

Coordinated Multi-Type UAV Strike Relying on Inertial Navigation
The system detected anomalies 12 seconds after the initial target launch,
identified the target at 4 km after 27 seconds as a small rotor UAV, issued
a decision command at 31 seconds, successfully trapped the first batch of
targets at 89 seconds, and detected two additional batches of targets, fixed-
wing and rotor UAVs, at 110 seconds. It took 14 seconds and 17 seconds
to identify each, 8 seconds to make disposal decisions for each batch, and
57 seconds and 101 seconds to intercept, respectively. The total scenario
involved intercepting three batches of targets, with a tracking precision not
exceeding 3 meters and a total handling time of 211 seconds.

Table 2. Human-machine task distribution throughout the testing process.

Time Interval Task System Functions Commander
Functions

Operational
Aspect

Phase 1 T0-22s Target
Acquisition

Autonomous Sensor
Coordination for
Target Search

Monitoring &
Augmentation

Multidimensional
Situational
Awareness

22-27s Target
Identification

Data Fusion for
Positioning, Image
Recognition

Review of
Identification
Results

Spatiotemporal
Target Locating

(Continued)
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Table 2. Continued

Time Interval Task System Functions Commander
Functions

Operational
Aspect

27-31s Decision on
Disposal

Generation of
Disposal Plans and
Recommendations

Selection of
Disposal Plans

Human-Machine
Collaborative
Decision-Making

31-89s Execution of
Disposal

Command Issuance,
Equipment Control

Monitoring &
Confirmation

Coordinated
Equipment
Actions

Phase 2 80-110s Target
Detection

Autonomous Sensor
Coordination for
Target Search

Monitoring &
Augmentation

Multidimensional
Situational
Awareness

110-127s Target
Identification

Data Fusion for
Positioning, Image
Recognition

Review of
Identification
Results

Spatiotemporal
Target Locating

127-137s Decision on
Disposal

Generation of
Disposal Plans and
Recommendations

Selection of
Disposal Plans

Human-Machine
Collaborative
Decision-Making

173-181s Emergency
Decision
Making

Re-evaluation of
Recommendations

Manual
Intervention,
Secondary
Decision-making

Effectors
Coordinated
Actions

137-211s Execution of
Disposal

Command Issuance,
Equipment Control

Monitoring &
Confirmation

CONCLUSION

In the context of increasingly complex UAV threats and advancements
in intelligent technologies, this study emphasizes human-computer
collaboration. It develops an innovative C-UAS intelligent command and
control strategy model based on the C4ISR architecture and the OODA loop.
This model integrates analyses of collaborative protection needs and the
creation of algorithms for detection and decision-making, aiming to enhance
the efficiency and reliability of command and control systems.

The effectiveness of the model was demonstrated through three distinct
C-UAS field exercises, which assessed the system’s response efficiency and
operational effectiveness. These exercises further validated the role of
innovative strategies in human-computer collaborative command and control
for advancing C-UAS missions. The model is designed to improve defenses
against evolving drone threats and optimize command efficiency within
human-machine systems.

Looking ahead, the model framework is expected to precisely delineate
human-computer tasks across various phases of C-UAS operations and
dynamically adjust the balance of information sharing between humans
and machines. It seeks to adapt to the influence of artificial intelligence
on traditional command and control paradigms, providing new theoretical
insights into these systems.
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