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ABSTRACT

The author is conducting basic research on the autonomous behavior of a small biped
robot. The system under study acquires behavioral data when a human controls the
small biped robot. This system then learns from this behavioral data and image data
obtained from the robot’s onboard camera. However, our previous method did not
account for time-series behaviors, resulting in the repetition of certain behaviors. To
address this issue, this paper utilizes Recurrent Neural Network (RNN), which are well-
suited for learning time-series information. As a result, it was confirmed that the
robot could behave autonomously without frequently repeating specific behavioral
patterns.
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INTRODUCTION

We constructed a system that combines a Convolutional Neural Network
(CNN), a Recurrent Neural Network (RNN), and a Support Vector Machine
(SVM) using camera images as input and confirmed the autonomous behavior
of a biped robot.

Since late 2019, COVID-19 has spread rapidly, restricting activities for
people worldwide. To prevent infection, it became necessary to find ways for
people to continue their daily activities without physical contact. However,
certain challenges cannot be fully addressed by teleconferencing systems,
particularly in fields that require direct interaction with the physical world,
such as nursing care, logistics, travel, and daily activities. It is difficult
to use robots that do not have autonomy and only have remote control
functions. This is because of the heavy burden on the operator who constantly
remotely controls the robot. Currently, robots can’t behave autonomously in
any environment without human remote control using existing technology.
Therefore, the author studied a learning structure that enables robots to
behave autonomously by learning from the robot operation logs of human
operators (Motegi, 2023). However, this method did not consider the time
series of behaviors. As a result, some behavior patterns were repeated during
autonomous behaviors, such as right turn, left turn, right turn, and so on.
Hence, in this paper, we aimed to address the time series of behaviors and
studied a learning structure to suppress the repetition of these behavior
patterns during the autonomous behavior of the robot.
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PREVIOUS WORK

Research on autonomous behavior for robots, drones, and automobiles has
been actively conducted in recent years. However, many of these methods
rely on various sensors in addition to camera images, which can be costly.
Also, the algorithms for autonomous behavior tend to be complicated
(Nieuwenhuisen, 2014). Traditional image-based navigation requires a multi-
step process. For example, the first step involves extracting features from
a camera image (Vale, 2004). Next, a map is created using these results
(Jeong, 2006). Finally, the action is determined based on the rules that
were established in advance (Belker, 2002). The above is the general method
(Kim, 2018). However, in these multi-step processes, adjustments are needed
at each stage when the environment changes. Additionally, errors can occur
at each stage and accumulate over time. Research has also been conducted to
address these issues using deep learning, which takes a camera image as input
and directly generates the output (Kim, 2018) (Liu, 2017). This is known as
the end-to-end method.

Hence, the author conducted basic research on learning from the human
operation logs so that the robot can behave autonomously (Motegi, 2023).
However, this method showed a phenomenon in which several patterns
of behavior were repeated during autonomous behavior. Therefore, in this
paper, we further investigate the machine learning structure with the aim of
suppressing this phenomenon.

SYSTEM REQUIREMENTS

As mentioned earlier, both camera images and human operation logs are
used to enable the robot to behave autonomously. Therefore, the system
must understand when and how the robot is being operated by humans.
Furthermore, the robot should avoid unnecessarily repeating certain behavior
patterns such as right turn, left turn, right turn, and so on, asmuch as possible.
In addition, it is desirable for the robot to behave without colliding with the
environment during its autonomous behavior. Therefore, we have outlined
the requirements for this system as follows.

(1) It is possible to acquire both camera images and human operation logs
(logs acquisition).

(2) To prevent the repetition of meaningless behavior patterns, the time
series of selected behaviors operated by the human should be able
to be reflected during autonomous behavior (reflection of time-series
behaviors).

In this paper, we specifically consider the above requirement (2). Then, the
following requirements were evaluated.

(3) Autonomous behavior without colliding with the environment is
possible (autonomous behavior determination).
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Figure 1: System architecture: Robot (NAO6) and GUI used in the experiment.

Figure 2: Experimental environment.

SYSTEM IMPLEMENTATION AND EXPERIMENT

Figure 1 presents the system architecture, the robot utilized in the experiment,
and the graphical user interface (GUI) for operating the robot. Figure 2 shows
the experimental environment.

Figure 3 illustrates the structure of the learning component, which
integrates SVM into the convolutional neural network. Figure 4 depicts the
structure of the convolutional neural network with RNN added. Figure 5
shows an example of the accuracy values when training with the structure
shown in Figure 4. Figure 6 shows the structure of Figure 4 with additional
SVM. Table 1 shows an example of the confusion matrix of SVM trained
with the structure shown in Figure 6.

Implementation for Requirements (1) (Logs Acquisition)

First, we describe the component of the constructed system related to log
acquisition, as outlined in requirement (1). Figure 1(a) shows that the robot
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used in the experiment is the NAO6, manufactured by SoftBank Robotics.
The robot was pre-set with primitive behaviors: forward, right turn, left turn,
and backward. The parameters of each motion were set to move forward and
backward 10 cm each, and to make a right turn and a left turn 10 degrees
each.

Figure 3: Structure of the training part with SVM added to CNN.

Figure 4: Structure of the training part with RNN added to CNN.

The NAO6 robot is equipped with two cameras, one on its forehead and
one on its mouth; however, in this experiment, only the forehead camera
was utilized. A notebook PC (FUJITSU LIFEBOOK WA3/D3, with an Intel



Autonomous Behavior of Bipedal Robot by Learning Time-Series Camera Images 715

Core i7-9750H CPU and 8GB of memory) was used to send operation
commands to the NAO6 and for learning purposes. The notebook PC and
the NAO6 communicate via a Wi-Fi access point. Additionally, the system
was developed using Python as the programming language.

The GUI shown in Figure 1(b) was developed for the experiment. Initially,
a human uses this GUI to control the robot. In this system, when the human
clicks a behavior button, the selected behavior and the robot’s camera image
prior to the action are recorded. The experimental environment depicted in
Figure 2 is the laboratory at the author’s university. The robot was operated
using the GUI in this environment, and the selected behavior and images were
saved as learning data.

Implementation for Requirements(2) (Reflection of Time-Series
Behaviors)

In this section, we first discuss the authors’ previous work. In our
previous study, we operated the robot three round trips from the front in
Figure 2(a) to the refrigerator in Figure 2(b) and obtained a total of 624
images(22 backward, 310 forward, 77 left turns, and 215 right turns).

For the learning data mentioned above, the input was the camera image
of the robot, and the output was the behavior selected by the human
operator. Fine-tuning was then performed on the convolutional neural
network, MobileNet V2 (Sandler, 2018), which had been pre-trained on
ImageNet (Deng, 2009). As shown in

Figure 3, after fine-tuning, the fully connected layer responsible for
behavior selection was removed from MobileNet V2, and the output of the
average pooling layer was used as input to the SVM.

However, this method did not consider the time series of behaviors, and
some behavior patterns, such as right turn, left turn, right turn, and so on,
were repeated during autonomous behaviors (Motegi, 2023).

To consider the time series of behavior, we decided to utilize RNN.
Specifically, as shown in Figure 4, we used RNN instead of SVM in Figure 3
for training. In this case, MobileNetV2 is already fine-tuned with the above
training data and is not re-trained, and only the RNN part is trained. Because
some of the above training data were not acquired in chronological order,
we prepared 659 images (42 backward, 359 forward, 82 left turns, and
176 right turns) for RNN training, which consisted of time-series data from
five new round trips in the environment shown in Figure 2. For the RNN
implementation, we used SimpleRNN provided by Keras (Google, 2015), a
python deep learning library. The 1 × 1 × 1280 data, which is the output
of the average pooling layer of MobileNetV2, was formatted to 1 × 1280
and input to the RNN in Figure 4. The number of intermediate layers and
the number of samplings of past data for estimating the next behavior were
adjusted in various ways. In practice, the number of intermediate layers of
the RNN was varied between 80 and 1280, the number of samplings of the
considered historical data between 1 and 16, and the number of epochs was
trained with 100 or 30. However, the accuracy value for the evaluation data
was not improved, being only 0.5 at best. For example, as shown in Figure 5,
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the final accuracy value for the evaluation data(orange line) was about 0.51
when the number of intermediate layers of RNNwas set to 1280, the number
of samplings of past data to be considered was 10, and the number of epochs
was 30. The blue line in Figure 5 shows the change in accuracy values for
the training data. We observed the accuracy values by changing the training
data, the number of intermediate layers, and other parameters in the structure
shown in Figure 4, but it was difficult to find a good training condition.

Figure 5: Training results when RNN is added to CNN (1280 intermediate layers, 10
samplings of past data to be considered).

Figure 6: Structure of the training part that adds SVM to CNN and RNN.
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Table 1. SVM’s confusion matrix on the evaluation data.

Predicted Behaviors

Backward Forward Left Turn Right Turn

Correct behaviors Backward 76% 17% 8% 0%
Forward 2% 88% 4% 6%
Left turn 0% 28% 72% 0%
Right turn 12% 18% 0% 70%

Therefore, as shown in Figure 6, we attempted to determine autonomous
behavior by SVM by removing all coupling layers of the RNN. As in the
previous example, the number of intermediate layers in the RNN is 1280,
and the number of samplings of past data to estimate the next behavior
is 10. This was determined empirically because the maximum accuracy
value was obtained for the evaluation data when SVM was added to the
RNN trained with these parameters adjusted as described above. The output
1 × 1280 of the RNN was used as input to SVM to perform 4 classifications
corresponding to each behavior. The scikit-learn python library was used to
use SVM as described above, and the GridSearchCV function was used to
determine the SVM parameters.

Table 1 presents the SVM confusion matrix for the evaluation data. The
rows in Table 1 represent the true classes, while the columns represent
the predicted results. The prediction accuracy for backward behavior was
approximately 76%,with 17%of cases incorrectly classified as forward. This
misclassification occurred because the experimental environment required
minimal backward movement, leading to infrequent use of this behavior by
the operator.

Conversely, the prediction accuracy for forward behavior was high, at
88%. This is due to the abundance of forward movement data, with 359
instances recorded during robot operation.

For the left turn, the prediction accuracy was 72%, with 28% of cases
mistakenly identified as forward. This may be because, in similar camera
images in the training data, there were cases where the operator selected a
left turn even when the operator could have selected forward.

For the right turn, 70% of the predictions were correct, 18% were
incorrectly identified as forward, and 12% were incorrectly identified as
backward. This is because the experimental environment has many obstacles
on the left side, leading the operator to frequently choose the right turn in
situations where the robot could have moved forward.

SYSTEM EVALUATION

Evaluation of Requirement (3) (Autonomous Behavior Determination)

Figure 7 shows a photograph of an autonomous behavior experiment.
Concerning the aforementioned requirement(3), the robot was made to
behave autonomously using the trained system. For comparison, the robot’s
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position before colliding with the environment was checked in each of the
following cases.

(1) The case where the final layer of MobileNetV2 with fine tuning after
the 13th block is deleted and its output is classified by SVM as shown
in Figure 3 (Motegi, 2023).

(2) The case where the SVM in (1) above is removed and an RNN is added
instead, and the output is classified by the SVM as shown in Figure 6.

Figure 7 shows the images of the robot-mounted camera (left
column) and the external camera (right column) taken for recording
purposes when the robot behaved autonomously according to (1) and
(2) above. In both cases, the robot began autonomous behavior from
approximately the same position in front of the location shown in
Figure 2(a).

As mentioned above, in the above case (1), the robot was trained
on data from 3 round trips made by a human between the front
in Figure 2(a) and the refrigerator in Figure 2(b). In case (2), in
addition to case (1), the RNN and SVM were trained on the data
of 5 round trips. Thus, after reaching the refrigerator, the robot
is expected to return to the point where it began its autonomous
behavior.

However, in case (1) above, the robot behaved autonomously to the
refrigerator, but its left arm collided with the refrigerator when it made
a right turn (Figure 7(1–5)). Therefore, the experiment was terminated
approximately 9 minutes and 30 seconds after the start of autonomous
behavior. At that time, as shown in Figure 7(1–3) and Figure 7(1–4),
the robot repeatedly performed right-turn and left-turn behaviors near
the cabinet where the towel was hung, close to the refrigerator. This
occurred because the robot selects primitive behaviors reflexively based
only on the onboard camera images, without considering the temporal
context of the behaviors. On the other hand, in case (2) above, the
right arm collided with the right-side cabinet on the way back to the
starting point of autonomous behavior (Figure 7(2–5)) after making a right
turn in front of the refrigerator (Figure 7(2–3)). Therefore, the experiment
was terminated approximately 9 minutes after the start of autonomous
behavior. This is because the system misidentified a left turn as a forward
behavior. In this case, the right and left turns were not repeated as in
the case (1), but the forward and backward behaviors were repeated
several times. However, compared to the above case (1), it did not collide
and behaved a long distance in a short time without repeating left and
right turns. This confirms the effect of the time-series structure shown in
Figure 6.
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Figure 7: Picture of autonomous behaving.

CONCLUSIONS

As a fundamental study toward realizing a real-world avatar, we investigated
a system that selects autonomous behavior by learning from camera images
and human operation logs. The system combines a fine-tuned MobileNetV2,
a recurrent neural network (RNN), and a Support Vector Machine (SVM).
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The autonomous behavior of the robot up to the point of collision with
the environment was compared between this and a system that did not
include an RNN. When the latter RNN is not included, the time series of
the behavior is notconsidered. Therefore, right and left turns were repeated
during autonomous behavior. However, as proposed in this study, combining
this with an RNN resulted in a learning mechanism that considers the time
series of behaviors. This enabled suppression of the phenomenon of repeated
left-right turns during autonomous behavior. It was also confirmed that
the proposed system can behave autonomously over long distances without
colliding with the environment.

REFERENCES
A. Vale, J. M. R., 2004. Feature extraction and selection for mobile robot navigation

in unstructured environments. 5th IFAC/EURON Symposium on Intelligent
Autonomous Vehicles, 37(8), pp. 102–107.

C. Liu, B. Z. C. W. Y. Z. A. F. H. L., 2017. CNN-Based Vision Model for Obstacle
Avoidance of Mobile Robot.MATEC Web of Conferences.

Google, 2015.Keras Documentation. [Online] Available at: https://keras.io[Accessed
7 6 2024].

J. Deng, W. D. R. S. L.-J. L. K. L. a. L. F.-F., 2009. ImageNet: A Large-Scale
Hierarchical Image Database. IEEE Computer Vision and Pattern Recognition
(CVPR), pp. 2–9.

M. Sandler, A. H. M. Z. A. Z. L.-C. C., 2018. MobileNetV2: Inverted Residuals
and Linear Bottlenecks. The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4510–4520.

M. Motegi, 2023. Autonomous Behavior of Biped Robot by Learning Camera
Images.HCI International 2023 Posters, pp. 498–506.

M. Nieuwenhuisen, D. M. S. B., 2014. Obstacle Detection and Navigation Planning
for Autonomous Micro Aerial Vehicles. International Conference on Unmanned
Aircraft Systems, pp. 1040–1047.

T. Belker, D. S., 2002. Local Action Planning for Mobile Robot Collision Avoidance.
Proceedings of the IEEE/RSJ Inti. Conference on Intelligent Robots and Systems,
pp. 601–606.

W. Y. Jeong, K. L., 2006. Visual SLAM with Line and Corner Features. Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2570–2575.

Y-H. Kim, J.-I. J. S., 2018. End-to-End Deep Learning for Autonomous Navigation
of Mobile Robot. IEEE International Conference on Consumer Electronics.


	Autonomous Behavior of Bipedal Robot by Learning Time-Series Camera Images
	INTRODUCTION
	PREVIOUS WORK
	SYSTEM REQUIREMENTS
	SYSTEM IMPLEMENTATION AND EXPERIMENT
	Implementation for Requirements (1) (Logs Acquisition)
	Implementation for Requirements(2) (Reflection of Time-Series Behaviors)

	SYSTEM EVALUATION
	Evaluation of Requirement (3) (Autonomous Behavior Determination)

	CONCLUSIONS


