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ABSTRACT

The assembly of equipment necessitates varying degrees of expertise, with complexity
often escalating alongside technological advancements. While automation has
reduced the workload in manufacturing and assembly lines, repair and maintenance
still require a significant user skillset. This research focused on developing a modular
robotic system with straightforward assembly and disassembly, requiring minimal
robotics expertise from end users. A modular robotic system offers benefits such as
shorter repair times leading to reduced downtimes on a factory shop floor, options
for task-agnostic reconfiguration and deployment, and potential reductions in initial
investment costs. To validate this hypothesis, a study was conducted with twelve
participants with differing expertise in tools, hardware, and construction. Direct
evaluation of personal and workplace attributes such as workload, task complexity,
prior expertise and learning is often indiscernible and non-comparable. Thus, it
was essential to establish a tangible workflow to evaluate and monitor the design’s
effectiveness and any modifications’ impact on assembly ease. The study employed
the Task Complexity Index (TCI) and NASA Task Load Index (TLX) adapted to measure
task complexity and user workload. Both TCI and TLX have been used independently in
various studies and a correlation between the two was identified. Combining data on
task complexity and workload provided a comprehensive evaluation of the assembly
process. Results indicated a marked improvement in the Assembly Complexity Index
(ACI) during the second phase of experiments due to participant learning and a lower
time (p = 0.026) required for completion of a much more complicated task demanding
a higher workload (p = 0.014). This research aims to establish a framework for
identifying an Assembly Complexity Index (ACI) using these the subjective workload
and complexity assessment tools. The study considered factors such as the number of
components, operations, and tools required. In addition, it acknowledged that factors
like the availability of resources, component size and weight, operation complexity,
and tool availability also impact the overall assembly complexity.
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INTRODUCTION

With the increasing adoption of robotics and automation in industry, it has
become evident that future factories will require some form of robotics.
Although many robotic solutions are available off-the-shelf, there remains
a clear hesitance in certain industries with lower payload capacities. The
Food and Beverage sector (Müller, 2023) contributed to only 3% of global
annual installations of industrial robots and showed no increase in the
number of units installed compared to the previous year. As most available
manipulators are designed for heavy-duty factory tasks, making them
unsuitable for applications requiring lightweight payloads. Furthermore,
off-the-shelf robots present additional challenges such as vendor lock-in
(Markl et al., 2021) and dependence on the original equipment manufacturer
(OEM) for repairs and maintenance, which often result in significant
downtimes and adversely affect throughput (Bard, 1986). These issues are
intensified when there is a need for task changes on the factory shop
floor. Fixed degrees-of-freedom (DoF), specific manipulator specifications
like payload capacity, reach, and work envelope necessitate considerable
investment costs for re-deployment to justify any task changes, including
the decommissioning of older robotic solutions, managing their end-of-life,
and purchasing and deploying newer, suitable robots or modifying and re-
designing the task to fit within the manipulator limitations (Chen and Yim,
2016).

Task-agnostic manipulator solutions are therefore essential. Research
into task-agnostic robotic solutions has been ongoing since the early days
of industrial robotics, leading to many modular robotic theories in the
literature. Some of the most cited research developments in modular robotics
include the Martonair Modular System at the Loughborough University
of Technology (now known as Loughborough University) (Harrison et al.,
1986), the Modular Robot System at the University of Stuttgart (Wurst,
1986), the Reconfigurable Modular Manipulator System at the Carnegie
Mellon University (Schmitz et al., 1988), The Dynamically Reconfigurable
Robotic System at the Science University of Tokyo (Fukuga and Nakagawa,
1988), the Structural Modules at the University of Texas (Tesar and Butler,
1989), the Rotary Joint based remote actuation at the University of Toronto
(Benhabib and Dai, 1991) and the TOshiba Modular Manipulator System,
TOMMS (Matsumaru, 1995). These developments propose various solutions
for module/unit-based designs and modularity in robotic systems, offering
inventories of components that can be reconfigured into desired manipulator
geometries. However, most suggested actuator units are too heavy for
practical industrial tasks, mainly due to the unavailability of state-of-the-
art, lightweight electric motors during the late 20th century. Modularity
and reconfigurability seem to be obvious design solutions for bespoke
applications. The objective of ongoing research in the area of “mechanical
design of modular robots” was to develop an inventory of basic modular
units with modern off-the-shelf electronics and a supported robotic software
system interface.
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The research focused on developing a modular manipulator to provide
bespoke solutions for end-users’ changing task needs. A design-to-
fit approach was employed during the development stages, utilising a
combination of Generative Design (Walia et al., 2021) and Additive
Manufacturing (Walia et al., 2021) to optimise both the design and
manufacturing processes respectively, and ensure lightweight structures.
The primary aim was to ensure the developed robotic system remained
throughout its lifecycle, especially for end-users with low technical expertise.
Key features included ease of assembly, integration, deployment, operation,
repair, decommissioning, and reusability to enhance system accessibility.

One essential requirement in robotics, and automation systems in general,
is managing the complexity involved and ensuring the correct level of
expertise for the assembly and deployment of systems. While lowering
system complexity is not always feasible, evaluating subjective complexity is
crucial for ensuring proper training of the end-user. An inverted U-shaped
relationship typically correlates task demand with performance, where
performance decreases as workload increases and resources become limited
(Lysaght et al., 1989).

The presented study of mental workload and subjective task complexity
was conducted through collaboration between NTU and PepsiCo. Task
complexity was assessed by volunteers rating their experience with the task
using a developed Task Complexity Index (TCI) scale, while subjectivemental
workload was measured using the NASA Task Load Index (NASA-TLX)
(Hart and Staveland, 1988). A critical consideration throughout the research
was ensuring a lower system’s assembly complexity. This drove the design
iteration phases, helping to improve the design and make informed, data-
driven decisions. The developed ‘Assembly Complexity Index’ (ACI) scale
was used to evaluate this aspect. This paper presents the methodology
developed to utilise the TLX and TCI indicators to collect data for the
corresponding subjective sub-scales, followed by normalisation the data,
and combining it with or without a weight function to derive an Assembly
Complexity Index.

To validate the developed ACI framework, a study was conducted with
volunteers from PepsiCo and the NTU Engineering Department. Participants
followed a comprehensive AssemblyManual and provided valuable feedback
for design iterations and improvements. The ACI framework quantitatively
considered a combination of both workload and task and demonstrated
the impact of supervised and unsupervised assembly (with and without an
assembly manual, and with and without prior experience) on the reported
system complexity and the time taken to complete the assembly.

METHODOLOGY

It was crucial to model an appropriate workflow to tangibly evaluate and
monitor the effectiveness of the design and any design iterations/modi-
fications on the ease of assembly. This was used to quantitatively determine
and assign an index for the robotic assembly complexity. Task Complexity
Index (TCI) and NASA Task Load Index (TLX) scales were appropriately
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modified and used to measure the task complexity and user workload,
respectively. The section goes through the different stages of the methodology
covering briefly the modified NASA TLX and TCI indicators and how these
have been utilised to extract data and further combined to develop a universal
ACI.

NASA TLX and TCI Indicators

The NASA Task Load Index (NASA-TLX) is a widely used, subjective
workload assessment tool that evaluates an individual’s perceived workload
across six indicators: Mental Demand, Physical Demand, Temporal Demand,
Performance, Effort, and Frustration. This study utilised the NASA-TLX
to measure the mental workload of participants during the assembly of the
modular robotic system.

Figure 1: NASA task load indeX scale.

A 21-point rating scale (see Figure 1) was used for each of the six
components. Equation 1 was used for calculating the TLX score (am).

am =

∑n
j = 1 yj ∗wj∑n

j = 1wj
(1)

am= mth participant load index
n = number of subscales
m = participant number
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y = score for the nth indicator by the jth participant
wj = weight from the subscale

A task complexity rating questionnaire was developed for this study.
This was based on a previous studies where after completing simulated
scenarios, operators rated the contribution of each item to the difficulties
in solving tasks. Factor analysis of the ratings identified eight interpretable
factors (Braarud, 1998 and Collier, 1998). Task Complexity Index (TCI)
relates to the various variables to address difficulties in solving a task:
Root cause difficulties, the spread of information, ambiguous information,
coordination, guidance information, attention demand, severity for plant
safety, and temporal demand. and combining it with or without a weight
function to derive an Assembly Complexity Index.

Adding a 7-point Likert scale to the description of each factor developed a
TCI scale (see Figure 2). Equation 3 was used for evaluating the TCI (bn).
This involved using the linearisation of the area ratio obtained from the
octagonal radar chart (see Figure 3).

Figure 2: Developed task complexity index scale.

bn = 7 x

√√√√√
(∑n−1
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(
72
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bn= nth indicator index
n = number of subscales
m = participant number
x = 8 - score for the nth indicator by the ith participant
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Figure 3: Task complexity index indicators on a radar chart.

Normalisation and Assembly Complexity Index
This was followed by the normalisation of the data for both TLX and TCI
to a 5-point scale using equations 4 and 5.

a′m =
5

maximum weighted TLX value
am (3)

b′m =
5

maximum TCI
bm (4)

am= mth TLX
bm= mth TCI
m = participant number
maximum weighted TLX value = 18.67
maximum TCI = 7
Assembly Complexity Index (ACI, cm) was calculated using the equation 6.

cm =
a′m wa + b′m wb

2
(5)

a
′

m= mth TLX
b
′

m= mth TCI
wa = weight for TLX
wb = weight for TCI
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m = participant number
The weights wa and wb (between 0 - 1) calculated by averaging an

importance score between the workload and the complexity (see Figure 4)
and normalised to 1, such that wa + wb = 1.

Figure 4: Weights for TLX and TCI normalised to 1.

Experimental Study

Figure 5: Some participants performing tasks during the experimental study.

The study conducted involved 12 participants (see Figure 4) visiting twice
for 2-hour long sessions with a gap of two weeks between the two sessions.
The participants were provided no prior information about the details of the
assembly tasks. During the first visit (Task 1), participants were allotted a
maximum time of 90 minutes to get familiar with the provided assembly
manual for the robotic joint sub-assemblies and utilise the provided 3D
printed parts, electronic components and tools to complete the assigned sub-
assembly of a single robotic manipulator joint. The completion of the task
involving the electro-mechanical assembly culminated with the control of the
actuated robotic joint using a simple GUI based controller.

The second visit (Task 2) involved the participants to assemble a 2 DoF
robotic manipulator configuration without the use of the assembly manual
using the given tools, 3D printed parts and electronic components but
without a time limit.

A completion time for each participant was also recorded for both the
tasks. At the end of both tasks the participants were required to fill out the
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NASA-TLX and developed TCI questionnaires. The completion times and
the calculated TLX, TCI and ACI values are presented in the Table 1.

Table 1. Recorded completion times and calculated TLX, TCI and ACI values.

Candidate ID Time
(mins)

TCI
(b
′

m)
TLX
(a
′

m)
ACI
(cm)

Time
(mins)

TCI
(b
′

m)
TLX
(a
′

m)
ACI
(cm)

TASK Number Task 1 Task 2

1 46 1.36 0.50 0.34 47 2.22 1.04 0.64
2 70 1.52 2.02 0.96 58 1.26 3.09 1.36
3 73 1.45 1.91 0.91 61 1.43 1.34 0.68
4 66 4.07 1.18 0.88 57 1.96 1.66 0.86
5 76 1.18 0.64 0.38 62 0.94 1.20 0.57
6 65 2.08 2.32 1.14 60 1.49 1.95 0.93
7 67 1.75 3.14 1.43 53 1.43 3.23 1.44
8 83 1.99 2.93 1.37 72 2.47 3.80 1.77
9 58 1.21 1.16 0.59 61 1.34 1.39 0.69
10 66 2.00 2.79 1.31 68 1.34 3.00 1.33
11 37 1.45 1.04 0.56 51 2.47 2.12 1.10
12 56 2.17 3.02 1.42 50 1.82 3.21 1.47

RESULTS

This was followed by a statistical analysis to validate the hypothesis and
extract correlations between several variables. This process particularly
proved to be useful for determining the specific areas of improvement for
future design iterations and task related resources.

Reliability of the Recorded TCI and TLX

To evaluate the reliability of the recorded data, the internal consistency was
estimated using the Cronbach’s alpha. A low to moderate alpha of 0.707
(> 0.7) and 0.724 (> 0.7) was calculated for the task complexity (n= 8) during
the task 1 and 2, respectively. This was an acceptable internal consistency for
the TCI rating scale (Murphy and Davidshofer, 1994).

In comparison, Cronbach’s alpha for the NASA TLX was .831 and .777
for Task 1 and Task 2, respectively.

Correlation

A Pearson correlation coefficient (Cohen et al., 2009) was calculated for the
measured variables with time and is presented in Table 2.

A negative correlation between TCI and Time for Task 2 demonstrates that
a lower time was required for a task which had subjectively higher complexity
in comparison to Task 1 due to no availability of the assembly manual and a
bigger assembly to be completed. This could be due to a combined effect of
the learning experience from Task 1 and no time limit for Task 2.

A higher workload has been associated with a higher time taken for the
assembly completion though-out the study.
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Table 2. Calculated Pearson correlation coefficient.

Descriptor Correlation Coefficient (r)

TCI and Time (task 1) 0.134
TLX and Time (task 1) 0.398
ACI and Time (task 1) 0.404
TCI and Time (task 2) −0.223
TLX and Time (task 2) 0.274
ACI and Time (task 2) 0.238
TCI and Time (overall) 0.071
TLX and Time (overall) 0.280
ACI and Time (overall) 0.275

Correlation between TCI and TLX for both tasks were positive (0.158
and 0.181, respectively) clearly indicating an increase in workload with the
increasing complexity of the task.

Paired t-Tests

One-tailed paired t-tests were conducted for the data comparing the two tasks
undertaken.

The evaluated TCI did not show a significant difference in the two tasks,
consolidating the potential effects of learning and experience and the similar
assembly steps required for the developed manipulator. This also signified the
ease of assembly and a relatively lower technical-expertise requirement from
the end-user.

Workload reported was significantly higher in task 2 in comparison to
task 1 (p = 0.014). The overall Assembly Complexity Index increased for
the task 2 (p = 0.046).

The p-value of 0.026 (< 0.05) indicated a significantly lower time required
to complete the assemblies on the second attempt, additionally confirming the
positive impact on the assembly efficiency of the end-used due to a previous
experience.

DISCUSSION AND CONCLUSION

In addition to the quantitative data and presented analysis, the qualitative
participant feedback at the end of the study aligned with the observed effects
of learning and ease of assembly during the second attempt. Although, the
current methodology does not include a tangible method to directly measure
the effects of learning and experience of a participant, but the completion of
Task 2 without the availability of the Assembly Manual and a significantly
lower time required even with a higher workload indicates the correlation
with the previous Task and the similarity of assembly steps.

The research project involved the development of an easy-to-assemble
modular manipulator to suit the bespoke and changing needs of the industry
shop-floor. The presented framework to evaluate the Assemble Complexity
Index of an assembly task of a robotic manipulator can be universally
applied to most tasks under consideration either directly or after appropriate
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modifications. In the research project the ACI methodology proved to be
beneficial to improve the design of the manipulator with considerations.
Observing the raw data for the specific indicators revealed the potential
for improvements in the Assembly Manual provided (TCI → Ambiguous
Information and Spread of Information).

The presented ACI methodology can be used as an evaluation tool at
the initial design and development stages to make informed and data-
driven design decisions and iterations. The study conducted also showed the
potential use of ACI as a monitoring tool for assembly and disassembly stages
during deployment, maintenance, repair and decommissioning.

A numerical ACI allows users to train for different levels of complexity
effectively and monitor access to specific sub-assembly stages for a simple
system, such as the one presented here, or even a highly complex off-the-shelf
manipulator robot. The developed methodology is universally applicable to
any task involving several stages of complexity. It helps monitor, train, ensure
the safety of both the end user and the equipment during assembly, and aids
in making informed decisions during the design stages.
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