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ABSTRACT

The adoption of robots in daily life, such as service robots, is progressing and
necessitates that humans make informed decisions when interacting with them.
However, the relationships between humans and robots, particularly in emergencies,
are not as developed as human-to-human relationships. A lack of understanding
about robots often leads to significant accidents. To facilitate effective and appropriate
collaboration, the analysis of human-robot interaction (HRI) is essential. This study
focuses on analyzing “reliability,” which is particularly crucial in the healthcare and
training fields. We specifically examined the interactions between humans and robots
during emergencies and analyzed the reliability of these interactions. Our verification
method combines case studies and empirical experiments, beginning with a case
analysis and followed by an experimental design based on these findings. Empirical
experiments confirmed that combining visual and tactile feedback significantly affects
interface reliability in HRIs. Designing empirical experiments based on case study
results is a crucial analytical approach for enhancing the utility of services and
healthcare robots for users.
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INTRODUCTION

Designing new technologies and human-machine interfaces (HMIs) to
prevent human errors is crucial for the success of future collaborative
societies. Examples of the use of HMI, augmented reality (AR), robots, and
artificial intelligence (AI) to enhance safety and efficiency can be found in
various fields, including nuclear power generation (Anokhin et al., 2018),
inspection drones (Riku Tsunori et al., 2019), healthcare (Dasho et al.,
2022) (Nakamura et al., 2021) (Yamazaki et al., 2021), and aviation
(Huseyin Avsar et al., 2016) (Njolomole et al., 2021). Designing reliable
systems and robots is vital, particularly in healthcare, where research
has focused on the reliability and dependability of AI of mobile robots
(Asan et al., 2020) (Sahoo et al., 2023). Human errors often result
from a multitude of factors, including communication between humans
and machines, environmental conditions, and decision-making processes
(Moghim et al., 2023). Therefore, understanding and designing human
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behavior and system interfaces are crucial for accident prevention (Moura
et al., 2014). Moreover, individuals who commit human errors are often
unaware of their mistakes and may require external cues to recognize their
errors (Matsuo, 2009). Consequently, analyzing the factors contributing to
human-machine communication errors in accident cases can significantly
improve trust in collaborative environments and shed light on human
decision-making characteristics.

Various studies have used text mining to analyze accident factors within
single domains (Luo et al., 2021), explored human-AI collaboration
potential (Lee et al., 2011), and investigated how cultural backgrounds
affect ethical decision-making (Awad et al., 2018). However, research
that systematically analyzes the causes of accidents from various fields
and design perspectives remains limited. Additionally, there is insufficient
discussion on the challenges arising in contemporary society owing to
the increasing collaboration between humans and AI in collaborative
environments.

To address these gaps, we conducted a case study to investigate
accidents caused by human error in the aviation, railway, and marine
domains in both Japan and Taiwan. This study considered the influence
of cultural and societal backgrounds on accident causes, to reveal patterns
and variations in accidents. We generated word clouds, as shown in
Figure 1, and co-occurrence networks, as shown in Figure 2, to analyze
the root causes. Our analysis of Japanese data (JTSB) [Japan Transport
Safety Board (https://www.mlit.go.jp/jtsb/english.html) [Accessed February
5, 2024]] indicates a higher frequency of communication errors in the
aviation sector, accidents due to time pressure in the railway sector, and errors
resulting from overconfidence in the marine sector, which we attribute to
variations in the adoption of automation technologies. In the aviation sector,
where automation has advanced, human communication errors are prevalent
because evaluations are often delegated to machines. By contrast, the marine
sector, where automation is less prevalent, sees more errors related to
individual biases and overconfidence. From Taiwanese data (TTSB) [Taiwan
Transportation Safety Board (https://www.ttsb.gov.tw/english/) [Accessed
February 5, 2024]], we observed that language differences were a prevalent
factor contributing to errors, suggesting cultural differences compared
with Japanese accident cases (Table 1). In our case study, human errors
in accidents were notably influenced by individual backgrounds and
experiences. Therefore, to reduce human errors in real-world coworking
environments, we propose the development of appropriate information
displays and collaborative behavior among humans, vehicles, and robots.
Chang et al. (2022) researched enhancing communication between humans
and vehicles using eye-tracking technology with the direct aim of reducing
traffic accident risks in autonomous vehicles. Moreover, Miller (2016)
introduced “Trust Fall” to determine if individuals trust autonomous systems
in safe scenarios or rely on their judgment in crises. Verberne et al. (2015)
define trust as the willingness to embrace vulnerabilities expecting positive
outcomes from an entity or system.
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Figure 1: Domains of human systems integration. (Adapted from U.S Air Force, 2005).

Figure 2: Co-occurrence network of accident cases in one TTSB data.

Table 1. Typical characteristics from the accident investigation reports by Japan
Transport Safety Board (JTSB) and Taiwan Transportation Safety Board
(TTSB).

Japan (JTSB) Taiwan (TTSB)

Aviation Communication errors
between people are high
(6/16).
Overreliances on experience
errors are few (1/16).

Mistakes due to language
differences in the manual.

Railway Many mistakes related to time
(7/8).

Mistakes due to differences in
cultural backgrounds.

Marine Many mistakes due to
attention elsewhere or
overreliance on experience
(7/13).

Mistakes due to differences in
cultural backgrounds.

Various fields, other than automobiles, employ numerous information
display methods. In the medical field, haptic feedback from surgical
robots is used for some applications, whereas other initiatives focus on
robots that mimic human movements to enhance human-robot interactions
(Takano et al., 2022) (Teppei Tsujita et al., 2022) (Hsieh et al., 2020).
Discussions further highlight the critical role of tactile feedback in enhancing
collaborative HRIs during operations (Jensen et al., 2021). Intuitive and



796 Misaki and Shirakawa

user-friendly interfaces are highly preferred in environments where humans,
machines, or systems collaborate, and intuitive and user-friendly interfaces
are highly preferred (Miura et al., 2015). Therefore, incorporating human
factors into the interface design is crucial for mitigating human error. This
study concentrates on “mistakes in human assumptions,” evaluating human
behavioral characteristics and information display elements that influence
decision-making when actions deviate from intuition. We achieve this
through a combination of case studies and empirical research. Furthermore,
we propose specific strategies to minimize human errors in human-machine
collaborative environments.

METHOD

This study focused on errors occurring during the interpretation and
comparison phases, drawing on seven stages of action (Figure 3) (Norman,
1989). The evaluative phase consists of perception, interpretation, and
comparison, which are phases prone to significant errors when one’s intuition
or experience diverges from the external reality. Several evaluative factors
exist between interpretation and comparison, often intuitively employing raw
data as judgment elements as one gains experience with various situations.
However, trust elements that evolve with experience lead to machine- or
system-presented information being generally more accurate and having a
lower error rate than human judgment.

Figure 3: The seven stages of action.

Discrepancies between machine and system intentions and personal
judgment may result in incorrect decisions, highlighting the importance
of valuing data-driven decision-making. Furthermore, given the pace of
technological advancement, quick adaptation to, and safe use of unfamiliar
technology, Figure 4 depicts the experimental conditions that integrate these
scenarios. Initially, the participants were divided into two groups: one
experiencing anticipated movements and the other experiencing unexpected
movements during robot operation. Subsequently, each group conducted
operations first by sight alone, and then with the addition of sensor
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(vibration) feedback, totaling four robot operation trials. After every two
trials, the participants were asked to complete a survey to gather feedback.
We selected vibration as sensor feedback because of its direct and tangible
impact on participants. Thus, by integrating these variables, we suggest
experiments that account for scenarios that diverge from intuition or involve
limited experience.

Figure 4: Experimental conditions.

As shown in Figure 5, the system first transmitted information from the
analog stick of the game controller to the PC, enabling the participants to
control the robot visually for conditions ¬ in Figure 4 and ®. For conditions
 and ¯, which combine visual control with sensor (vibration) feedback,
the controller was programmed to vibrate at specific positions of the analog
stick to simulate tactile feedback. A vibration motor was strategically placed
behind the controller to maximize the tactile feedback experienced by the
user. Prototyping revealed that a single motor was sufficient to vibrate the
entire controller effectively, leading to the decision to use only one motor. The
operations relied solely on the analog stick and ignored the other buttons.

Figure 5: Flow diagram of robot operation.
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Figure 6 illustrates the operational environment for moving the robot,
featuring the course layout (left) and actual experimental setup (right). The
course, designed to be 1000 mm wide, accounts for the increased difficulty
posed by the narrower dimensions to inexperienced users. The participants
were seated so that they could visually confirm the entire course from start to
finish. They faced the direction of the robot’s initial straight movement with
a course designed for forward motion and a left turn towards the goal.

Figure 6: Experimental course (left) and course outline (right).

As shown in Figure 7, to create movements that deviated from intuition,
we rotated the input axis of the analog stick by 20 ◦to the left. This change
pushed the stick downward and tilted it slightly to the right. This adjustment,
which involved a rotation matrix formula applied to the software, was
performed to intentionally alter the stick axis for a specific experimental
effect.

Figure 7: Analog-stick operating range

X = x cos θ + y sin θ (1)

Y = −x sin θ + y cos θ (2)



Enhancing Emergency Response: Reliability Analysis of Human-Robot Collaboration 799

The choice of 20◦ was determined during prototyping. A greater tilt would
drastically alter the interface, deviating from our initial design discussions,
while a smaller angle would not differ sufficiently from intuitive expectations,
considering potential controller inaccuracies. Forward or right turns were
enabled by tilting the analog stick along the red line. The inputs in the
diagonallymarked areawere designed to halt the robot and prevent abnormal
turning behaviors. This nonmoving zone was defined to avoid unexpected
actions during turns, with explanations provided to Group A,which expected
movements as anticipated. However, this information was withheld for
Group B, which experienced unexpected movements. The vibration feedback
was activated for forward and backward inputs along the red axis. Despite
issues such as tire orientation and axle alignment causing unintended
reactions during straight movements, this has been clarified previously. Both
groups were informed that the sensor (vibration) would be activated when
the robot moved forward upon direct stick input.

The study participants were 12 individuals in their twenties who were
evenly divided into Groups A and B, with each group containing six
members. A Likert-scale questionnaire was used to gather the responses. The
experimental conditions are listed in Table 2.

Table 2. Questionnaire items.

Questions Evaluation

Visual
Q1. How much did your experience
and intuition influence your
decision-making?

1 : Not affected at all - 7 : Highly
affected

Q2. How confident did you feel
operating the robot?

1 : Not reliable at all - 7 : Highly
reliable

Q3. I can’t rely on this interface. 1 : Don’t agree at all -7 : I agree very
much.

Visual and vibration
Q4. How much did your experience
and intuition influence your
decision-making?

1 : Not affected at all - 7 : Highly
affected

Q5. How confident did you feel
operating the robot?

1 : Not reliable at all - 7 : Highly
reliable

Q6. I can’t rely on this interface. 1 : Don’t agree at all - 7 : I agree very
much.

Q7. How much did you rely on your
“experience and intuition,” “ visual,”
and “vibration,” respectively, to
perform the operation?

1 : Not affected at all -7 : Highly
affected

RESULTS

This section details the experimental data using box plots that visually
represent the distribution and central tendencies of the data. In the box
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plots, the line inside the box denotes the median, providing a measure of
the central tendency, and the “×” mark signifies the mean, offering insights
into the overall average of the data. Given the limited number of data
points, we employed nonparametric tests, specifically the Wilcoxon rank-
sum test and the Wilcoxon signed-rank test, to assess significant differences.
Figure 8 summarizes the survey that assessed the impact of individuals’
experiences and intuition on their decision-making processes. The results
indicated a narrower spread for Group A when relying solely on sight versus
when combining sight with vibration. However, with p-values surpassing
the significance threshold of 0.05, no significant differences were identified.
Figure 9 shows the confidence levels during robot operation, indicating a
reduced spread for Group B with the use of sight and sensor (vibration)
feedback compared with the other conditions. Conversely, Group A exhibited
a larger spread under the same conditions. With p-values exceeding 0.05
across all conditions, this suggests the absence of significant differences.

Figure 10 displays the results of interface reliability. For Group B, the data
showed a tighter spread when using only sight as opposed to using sight and
vibration together, suggesting higher reliability scores with less dependence
on the interface in both the mean and median terms. This time, with a p-value
less than 0.05, we observed a statistically significant difference.

Finally, Figure 11 analyses the influence of intuition/experience, sight, and
vibration on decision-making. When considering intuition and experience,
Group A demonstrated narrower variability with higher mean and median
values thanGroup B, indicating greater consistencywithin the group. In terms
of sight, both groups achieved high scores with limited variability, suggesting
uniform responses among participants. Regarding vibration, Group B
attained higher mean and median scores, reflecting greater receptivity or
sensitivity to this form of feedback. Within each

Figure 8: Results of Q1 and Q4 on the degree to which experience and intuition
influenced decision-making.

Group A median values ranked from highest to lowest were sight,
intuition/experience, and vibration for Group A, and sight, vibration, and
intuition/experience for Group B. However, with p-values exceeding 0.05
across all comparisons, this indicates a lack of statistically significant
differences.
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Figure 9: Results of Q2 and Q5 on how confident they felt in operating the robot.

Figure 10: Results for interface reliability for Q3 and Q6.

Figure 11: Results for the degree of reliance on “experience and intuition,” “ visual,”
and “vibration” in Q7, respectively, to operate.

DISCUSSION

The results, illustrated in Figure 8, evaluate the impact of experience
and intuition on decision-making under various conditions. In both the
visual and combined visual and vibration (sensor) conditions, Group B
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displayed lower median and mean values for intuition and experience.
This implies that, particularly in critical scenarios, decision-making might
deprioritize experience and intuition according to these findings. Despite
vibration increasing mean and median values for confidence in robot
operation (Figure 9), no significant difference was observed. Thus, it appears
that using vibration as an information display method does not directly
influence confidence in robot operations. However, the notable increase
in the mean and median values for Group B when sensor information
was added suggests that supplementing visual observations with sensor
data may enhance confidence in robot operation. While comparing solely
visual with combined visual and sensor (vibration) inputs in Group B
suggests that sensor information might influence confidence, this hypothesis
remains unconfirmed. The observed impact can be attributed to various
factors, including the frequency of the robot or stick operation. Additionally,
we consider that individuals with higher experience levels in robot or
stick operations tend to prioritize their experiences and intuition over
supplementary information such as vibration. Further research is warranted
to explore this aspect thoroughly. As shown in Figure 10, the P-value, related
to the analysis of unexpected movement conditions in this experiment, is
0.031, which falls below the established significance threshold of 0.05.
This difference was statistically significant. These results suggest that adding
vibrational feedback for straight-ahead movements to the interface enhances
its reliability in the face of unforeseen robot behaviors. This improvement
may stem from feedback that enables operators to verify normal operations
through an additional sense beyond visual comprehension. Therefore,
displaying information via sensors or other methods on the operational
interface can enhance the reliability of operations that lack feedback.

Finally, no significant differences were observed in evaluating reliance on
“experience/intuition,” “vision,” and “vibration.” However, the lower mean
and median values in unexpected movements suggest a reduced reliance on
“intuition” and “experience.” This implies that, in the face of unexpected
movements, relying on experience and intuition for assessment becomes
challenging, necessitating reliance on additional information. Conversely, the
higher mean and median values for vibration in Group B indicate greater
openness to incorporating sensor information into decision-making. This
likely reflects a willingness among the participants to integrate vibration
or sensor information into their decision-making, alongside intuition,
experience, and visual information. Visual information was cited in all cases,
underscoring that first-hand visual observation is crucial in decision-making
when the robot’s behavior is fully observable.

The aforementioned experiments aimed to validate the interface design for
enabling humans to respond appropriately during emergencies while using
robots. These experiments affirmed that the paramount factor in crafting
suitable interfaces for healthcare robots and wearable devices, which is
the focus of this special issue, lies in establishing reliability through the
integration of the tactile and visual senses.
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CONCLUSION

Our study underscores the importance of merging case studies and empirical
experiments when designing interfaces to enhance the functionality of service
robots, such as caregiving and surgical robots. Traditionally, focusing on
case studies or empirical experiments in isolation, combining these yields
deeper insights. By focusing on ‘mistakes in human assumptions’ and
behavior in unexpected scenarios, our study shows integrating visual and
tactile feedback significantly boosts human-robot interaction reliability. This
holistic approach is essential for developing more intuitive and effective
robots that minimize human error in critical environments. This study is
limited to engineering students with a baseline understanding of robots.
Nevertheless, the proposed approach could be applied to a broader user base.
For future research, it is crucial to conduct experiments with participants
with diverse experience levels, not just those well-versed in robotics or analog
stick use. Adopting this inclusive approach will enhance our comprehension
of HRI dynamics, ensuring that robot interfaces meet the varied real-world
needs of users in both caregiving and surgical contexts.
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