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ABSTRACT

Collaborative construction robots have emerged as a promising alternative to
relieve construction workers from both physically and cognitively demanding
tasks, contributing to a safer and more productive construction industry. However,
communicating with robots is not a trivial task as human workers and robots speak
different languages. From the human-centered perspective, allowing human workers
to communicate with robots using natural language is desirable because it minimizes
additional cognitive load to human workers. Existing studies, however, have been
focusing on converting language instructions into sequential actions, leading to a
rigid task plan and inability to handle complex situations and unstructured working
environments. To address this critical limitation, this paper explores the use of
behavior tree (BT), an alternative architecture for describing and controlling complex
tasks like excavation. A behavior tree is a hierarchical tree structure that specifies
the switching between the agent’s actions (i.e., execution nodes) via control flow
nodes. Its modular nature allows the BT of excavation to be generated through
linking reusable actions based on the human task descriptions. The resulting BT
structure enables the robot to alter its behavior by selecting different tree branches in
response to changing working conditions, thus improving its adaptability to dynamic
construction environment and its capability of error-handling. In addition, the BT
eases the human understanding of robot behavior for debugging and correcting robot
behavior. A corresponding framework is proposed for enabling humans to guide a
robotic excavator using goal-oriented language instructions. The framework consists
of four modules: interpretation and reasoning, knowledge management, structural
analysis and parsing, and BT generation. The interpretation and reasoning module
decomposes instructions into executable intents. The knowledge management
module organizes the knowledge for instruction reasoning, including the robot
capable skills and its current working environment. Structure analysis and parsing
module further grounds the intents and extracts associated parameters, while
BT generation module maps the extracted elements with predefined BT nodes,
building and refining the BTs of desired tasks. A case illustration is performed to
demonstrate the viability of the proposed framework with executable demos. The
findings are expected to facilitate efficient and transparent human-robot cooperation
in earthmoving construction from a human friendly perspective.
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INTRODUCTION

Collaborative construction robots, such as robotic excavators (Jin et al.,
2021), offer a promising alternative to relieve construction workers from
both physically and cognitively demanding tasks. For safe and productive
co-excavation, effective communication between humans and robots is
essential to align task goals of the team. Human operators traditionally
communicate their task intents through complex joystick control (Jin et al.,
2021). The process demands high multi-tasking skills in sensing, planning,
and operation, which may cause excessive human workload and safety issues
(Lee et al., 2022). In contrast, natural language is an intuitive way for
humans to express task intents. Instructing robots through natural language
has been widely explored in industrial manufacturing, autonomous driving,
and household service (Tellex et al., 2020).

However, robots may struggle to interpret human instructions and
generate a reliable execution plan, particularly high-level goal-oriented
instructions. Unlike formal robot languages, human languages are inherently
abstract and ambiguous. For instance, people prefer issuing high-level goal-
oriented instructions such as “Dig a trench over there,” rather than step-by-
step commands such as “Move forward 1 meter and” and “Low down the
bucket 0.5 meter” to specify every action in detail. Many existing studies
focused on extracting goals from simple instructions and using classical
planners to generate task plans for fulfilling the goals (Pramanick et al., 2020;
Tran et al., 2023). They cannot effectively handle high-level instructions that
describe long-horizon tasks. Besides, the generated execution plan lacks the
flexibility to suit dynamic and unstructured construction environments.

Compared to the rigid task plan, behavior tree (BT) is a control
architecture that can adapt to dynamic environments while enabling the
translation of human instructions into executable task plans. BTs have been
widely employed in many robotic applications such as object manipulation
and ground/aerial navigation (Iovino et al., 2022). They provide a fallback
mechanism for conditional checks, allowing robots to react dynamically
to failures through alternatives (Colledanchise and Ögren, 2018). Besides,
the tree-like structure of BT mirrors the hierarchical nature of tasks and
associated task instructions. Its modularity and extendibility ease the
translation of human language instructions into BT structures.

This paper presents a framework for enabling humans to guide a robotic
excavator using both goal-oriented and action-oriented instructions. The
framework translates high-level human instructions to low-level robot
actions to accomplish specified tasks. The remainder of this paper is
organized as follows. The next section introduces the background and
related work. The third section outlines the proposed framework with its
four modules. The fourth section presents a case illustration to prove the
framework’s feasibility, and the last section concludes the study with key
findings.
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BACKGROUND AND RELATED WORK

Using language instructions to guide robotic tasks requires converting
language to something readily for robots to grasp and accordingly generating
execution plans. Traditional studies modeled robot behaviors using action
sequences. The approaches resulted in rigid task plans that are poorly suited
to dynamic environments. In contrast, this paper focuses on BT due to
their modularity, reusability, flexibility, and adaptability, which make BT
well-suited for modeling complex robotic tasks in unstructured construction
environments.

Robot Understanding of Human Task Instructions

Humans guide robot tasks using either action-oriented instructions (AOIs) or
goal-oriented instructions (GOIs), aligning with the principles of hierarchical
task planning. Humans typically model a task in a hierarchical break-down
structure, as shown in Figure 1. A task can be either a composite task/subtask
that is executed in a sequence of primitive actions, or just one single primitive
action. Primitive actions are the atomic elements in the task hierarchy and
can be directly executed by robots by running the corresponding low-level
routine. Each performed action may impose effects on the world and change
the world states such as robot pose and object position. In this way, humans
can issue AOIs by specifying detailed actions (e.g., “Go forward 2 meters”
and “Pick up the cup”) or GOIs by expressing desired outcomes (e.g., “Bring
me the cup”).

Figure 1: Task hierarchical break-down structure.

To execute instructions effectively, robots need to extract intents—either
goals or actions—and generate corresponding task plans. To interpret AOIs,
traditional research applied various language parsing techniques, such as
CCG parsing (Suddrey et al., 2017) and deep-learning parsing (Sarkar et al.,
2023), for extracting actions, binding arguments, and action orders. The
extracted actions are matched with the predefined templates in an action
library and organized as an action sequence, linking the abstract intent
semantics with robot control functions (Lu and Chen, 2017). Differently,
understanding GOIs requires parsing embedded goals into logic-based
representations that serve as inputs for classical task planners (e.g., PDDL
planners (Pramanick et al., 2020; Tran et al., 2023)) to generate task plans.
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However, existing methods struggle with processing GOIs for long-horizon
tasks (e.g. excavation) in two aspects: 1) data limitations: parsing approaches
require extensive training data and often fail to handle complex or novel
instructions., and 2) computational constraints: classical planners suffer from
exponential growth in search space as the number of actions and states
increases, leading to long computation times.

Recent studies leveraged LLMs to simultaneously interpret GOIs and
plan the interpreted tasks. SayCan framework ranked the admissible atomic
behaviors (i.e., action-object pairs) for completing the given home service
instruction and grounded the actions to the current scene based on the
coupled affordance functions (Ahn et al., 2022). ProgPrompt utilized LLM’s
strength in code understanding to generate executable plans as programs
(Singh et al., 2023). However, the generated plans are all limited to
deterministic action sequences, which lack error tolerance and are ill-
suited for dynamic environments. Complex tasks managed through long
action sequences also require frequent cumbersome replanning when task
conditions change.

Behavior Trees for Robot Behavior Modeling

A behavior tree (BT) is a directed rooted tree structure that describes and
controls the execution flow of the robot’s behaviors (Colledanchise and
Ögren, 2018). Within a BT, internal nodes are known as control flow nodes
to specify the control-flow logic of behaviors, while leaf nodes are execution
nodes defining the robot’s executable behaviors. Nodes are connected by
arrows from parent to child. The root is the node without parents while leaf
nodes do not have children. Internal nodes have at least one child that could
either be a leaf node or internal node itself.

BTs operate by propagating signals called “ticks” from the root node down
to its children at regular intervals. If a leaf node receives a tick, it executes
and immediately returns a status (success, failure, or running) back up to
the root. The tree control flow is determined by this feedback, guiding the
robot to proceed to the next leaf node, wait for the current running node, or
terminate the tree execution. Table 1 summarizes the types of nodes and their
corresponding symbols. Leaf nodes are specified into Action and Condition,
while internal nodes include Sequence, Fallback, Parallel, and Decorator
types, depending on how they manage child execution.

Table 1. Node types of behavior tree.

Node Type Definition Symbol

Action A leaf node that controls the robot to perform
actions and returns success, failure, or running based
on the execution results.

Condition A leaf node that checks the world state against the
specified condition and returns success or failure
based on the evaluation.

(Continued)
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Table 1. Continued

Node Type Definition Symbol

Sequence An internal node that executes its child nodes in
order until one child returns failure or all children
return success.

Fallback An internal node that executes its child nodes in
order until one child returns success or all children
return failure.

Parallel An internal node that executes its child nodes in
‘parallel’ until a certain amount of child nodes
return success or all children return failure.

Decorator An internal node that modifies a single child
through user-defined policy. For example, a repeat
decorator can execute its child node until the child
node returns a specified times of success or one time
failure.

Figure 2 illustrates an example of BT for a trenching task, demonstrating
how a robot excavates multiple zones to a specified depth through a work
zone loop. This loop includes moving to appropriate positions and executing
a digging cycle. The digging cycle consist of sequential actions such as
MoveToDig, Dig, MoveToDump, and Dump to shape the terrain. During
execution, the BT is ticked in a top-down and left-right order until it reaches
a terminal state. The figure shows a snapshot of the BT ticking in which the
tree is waiting for the running MoveToDump node to complete. If the node
succeeds, the next action Dump executes; if it fails, the tree terminates the
task. This example highlights the advantages of BTs over traditional action
sequences in modelling robot behaviors:

• Modularity and Reusability: BTs can be generated and extended
with reusable nodes and subtrees. Their modular nature enhances the
readability and manageability of complex tasks.

• Flexibility and Adaptability: BTs provide the fallback mechanism for
conditional checks, allowing robots to react dynamically to failures
through alternatives.

Figure 2: Behavior tree graph of trenching task performed by excavators.
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Early research work translated AOIs into BTs using CCG parsing and
analytical mapping the parsing elements to BT nodes (Suddrey et al., 2022).
But the methods could only deal with a limited set of simple instructions.
Some recent studies employed LLMs to generate BTs in an end-to-endmanner
from human instructions (Izzo et al., 2024). They prepared a large synthetic
dataset of instruction-tree pairs and fine-tuned lightweight LLMs for learning
the BT generation. However, the generated BTs were not grounded with
robot skills or environments, limiting their real-world applicability. Other
studies proposed multi-step pipelines for converting GOIs to executable BTs
(Chen et al., 2024; Zhou et al., 2024), leveraging LLMs to decompose high-
level goals into subgoals and generate BTs through analytical expansion or
optimal expansion. The pipelines have showed promising results in terms of
understanding accuracy and success rates of task execution.

FRAMEWORK OF HUMAN LANGUAGE-INSTRUCTED ROBOTIC
EXCAVATION

This paper presents a framework to enable humans to guide a robotic
excavator using both goal-oriented and action-oriented instructions, as
shown in Figure 3. The objective of the framework is to translate goal-
oriented/action-oriented instructions into BTs as reliable execution plans. The
proposed framework consists of four modules: Interpretation and reasoning,
knowledge management, structure analysis and parsing, and BT generation.
Each module’s functionality and enabling approaches are described below.

Figure 3: Framework of human language-instructed robotic excavation.

Interpretation and Reasoning. This module aims at breaking down
human-issued GOIs/AOIs into smaller intents as high-level language plans.
To ensure that these decomposed intents are viable for execution, the
knowledge of robot capable skills and current working environment is
given as input for the decomposition. LLM serves as the reasoning engine
for the decomposing process, utilizing its versatility in natural language
understanding, commonsense reasoning, and text generation. Prompt-based
learning techniques are adopted to guide the generation of relevant outputs
while maintaining a structured format for better downstream processing.
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Knowledge Management. This module organizes and maintains critical
information about the environment and the robot’s skills for LLM-based
reasoning. The environmental information may include 1) elevation maps
of target trench and current terrain, 2) mask maps of dig and dump sites,
and 3) occupancy maps of obstacles (Terenzi and Hutter, 2023). Semantic
maps are used to deliver map information for high-level task planning while
a database stores the map grid values for low-level planning and control.
Besides, the robot’s skills are documented within a node library that defines
the robot’s executable actions and conditions. Relevant information includes
action names, action arguments, preconditions and postconditions of the
action, and action descriptions.

Structure Analysis and Parsing. This module processes descriptive intents
to extract grounded intents and relevant task specifications. The structure
analysis is first conducted to identify task loops and their positions within
the high-level plan. Then the parsing algorithm extracts grounded intents
along with associated parameters. A deep learning parser such as BERT-based
parser can be developed to accurately extract the intents.

BT Generation. This module creates an executable BT based on the
extracted intents and specifications. An initial tree is constructed by mapping
the intents to the predefined action/post-condition node from the node library
and sequencing the nodes according to the task logic. Then the tree is
iteratively pre-executed for finding failed condition nodes. The failed nodes
are replaced or updated with corresponding enabled action nodes to ensure
smooth execution. BT updating algorithms such as back-chaining can be used
in this process.

CASE ILLUSTRATION

This section presents a case for illustrating the feasibility of the proposed
framework. In this case, human workers issue both goal-oriented instructions
(GOIs) and action-oriented instructions (AOIs) to guide a robotic trenching
task. The human worker and the robot are assumed to share all the necessary
task information. To initialize the task, the human worker may issue a GOI
such as “Can you dig the Trench 1 at the Area 1?” If any task failure clues
are detected during supervising, the human worker can proactively intervene
by giving an AOI to correct robot actions, such as “Move the base forward
1 meter and put down the bucket on the ground”. The following paragraphs
present how these two instruction examples are translated into BTs.

Interpretation and Reasoning Using Context Knowledge. Figure 4
demonstrates the conversion of the GOI and AOI to descriptive intents. The
GOI is interpreted into a high-level language plan with a loop structure
to reflect work zone loop, while the AOI is broken down into a simple
list of human-specified actions. To improve the effectiveness of the LLM-
based generation, the prompts provided to the LLM include both generation
requirements and few-shot demonstrations. For instance, “Please generate
the descriptive intents based on the robot actions predefined in the node
library” is a requirement instructing the LLM to align the outputs to the
robot capabilities.
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Figure 4: Illustration of converting GOI and AOI to decomposed descriptive intents
based on given knowledge.

Extraction of Grounded Intents and Associated Specifications. Figure 5
shows the extraction of grounded intents and associated specifications from
descriptive intents. The GOI is analyzed with its structure to identify the
loop and its position. The remaining non-loop descriptions undergo text
parsing to obtain grounded intents and specifications. To facilitate training
and matching with robot skills, the extracted grounded intents are annotated
using the action and condition node names from the predefined node library.

Figure 5: Illustration of extracting grounded intents and associated specifications.

Generation of BTs Through Tree Expanding. Figure 6 illustrates the
process of BT generation given the grounded intents, specifications, and line
numbers. The grounded intents can be mapped with predefined action nodes
and condition nodes through keyword matching. Specifications are used to
populate the arguments of node functions. Line numbers help determine the
layouts and sequencing of nodes in the BT structure. The left part of Figure 6
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demonstrates coding examples of initial BT trees using the py_trees library.
Once the initial BT of GOI is built and executed, failed post-condition nodes
are updated with enabled action nodes to achieve the post-conditions. The
right part of Figure 6 shows the updating example. The failed condition node
AtLoc is replaced by a subtree, which contains the action nodeMoveBase and
its pre-condition node HasRoute. The example also highlights cases where
invalid node arguments (marked in red) are identified and corrected with
valid ones, ensuring the correctness of the updated BT. Figure 7 demonstrates
the final resulting BTs of the two instructions after updating. It is worth
noting that an action node is not limited to representing a primitive action but
can also be a subtree that addresses a complex goal, leveraging the reusability
of BTs. For instance, the post-condition ZoneDigged is addressed by a loop
subtree of sequential actions in the GOI case.

Figure 6: Illustration of generating BTs through tree expanding.

Figure 7: Resulting BTs of two instructions.

CONCLUSION

This paper proposed a framework for enabling humans to guide a robotic
excavator using both goal-oriented and action-oriented instructions. The
proposed framework is demonstrated through a case illustration of human
workers instructing a trenching task using the two instruction types. The case
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highlights the expressiveness of BTs in representing long-horizon complex
tasks like excavation in a human-readable format. It also demonstrates the
potential of BTs in facilitating the translation of human language instructions
into reliable adaptive task plans. Future studies are needed to address the
following key challenges: 1) optimizing prompt design for efficient and
accurate instruction decomposition, 2) effective detecting and updating
invalid node arguments during BT generation, and 3) automating the pipeline
for real-world robot task applications.
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