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ABSTRACT

Gesture recognition is a critical component of human-computer interaction, with
applications ranging from virtual reality to assistive technologies. However,
recognizing complex, multi-complex gesture sequences remains challenging. This
paper introduces DMGR, a novel algorithm for recognizing multi-complex dynamic
gesture tasks. Utilizing a list model and word segmentation-like processing, DMGR
parses complex gestures into constituent actions. The algorithm’s core innovation
lies in its contextual gesture recognition and probability density-based segmentation,
significantly enhancing accuracy and efficiency. Empirical results demonstrate
DMGR’s effectiveness in advancing gesture recognition technology, particularly for
intricate, multi-layered sequences. This research contributes to the evolving field
of gesture-based interfaces, offering potential for more intuitive and sophisticated
human-computer interaction systems.

Keywords: Dynamic gesture recognition, Human-computer interaction, Temporal logic
relationship network

INTRODUCTION

Gesture recognition has become an integral component of human-computer
interaction (HCI), with applications spanning virtual reality, assistive
technologies, and robotic control systems.While traditional approaches have
focused on recognizing isolated gestures, contemporary HCI applications
often require the interpretation of complex gestural sequences. This paradigm
shift necessitates systems capable of not only recognizing individual gestures
but also accurately segmenting and interpreting sequences of complex
gestures to infer user intent. Drawing parallels with natural language
processing (NLP), where understanding complex sentences requires word
segmentation and contextual comprehension, HCI faces similar challenges
in multi-complex dynamic gesture interaction. The key lies in developing
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methods to accurately delineate individual gestures within a continuous
sequence and establish contextual relationships between them.

This paper introduces DMGR (Divisible Multi-complex Gesture
Recognition), a novel algorithm that addresses the existing and potential
challenges. Inspired by word processing techniques in NLP, DMGR employs
a list model to decompose complex gestural sequences into constituent
operations and actions. The paper is structured as follows: First, it elucidates
the algorithm framework for divisible multi-complex dynamic gesture
task recognition and the underlying model based on word processing
techniques. Subsequently, it provides a detailed exposition of the algorithm’s
implementation, encompassing feature extraction, gesture classification,
segmentation, and optimization methodologies. Finally, the paper presents
the experimental design and results, offering empirical validation of the
proposed approach’s efficacy.

The algorithm incorporates action elements to reduce gesture dimension
and utilizes a probability density distribution-based segmentation technique
for accurate partitioning. By enhancing recognition accuracy and reducing
computational complexity, DMGR represents a significant advancement
in gesture recognition, particularly for complex, multi-gesture sequences.
This research paves the way for more sophisticated and intuitive human-
computer interaction paradigms, contributing to the evolving landscape of
gesture-based interfaces.

METHOD

Model of Divisible Multi-Complex Gesture Recognition (DMGR)

In the process of human-computer interaction (HCI), there are often many
complex gesture operation tasks, and it is very difficult to recognize these
complex gesture tasks directly. Therefore, this paper proposes a multi-
complex dynamic gesture task recognition model similar to word processing,
as shown in Figure 1. Compared with word segmentation in the field of NLP,
it is considered that a multi-complex dynamic gesture task can be divided
into a series of complex gesture operations, and each gesture can be divided
into several continuous gesture actions, each action corresponds to a single
gesture.

T is a given multi-complex dynamic gesture task, and V is the video input
data recorded corresponding to the multi-complex dynamic gesture task T. V
can represent a collection of a series of digital image frames, i.e

V = {ft|t = 1, 2, · · · }

Where ft represents the image of frame t List is a list of consecutive
elements in strict order. Each frame in V corresponds one by one to each
element in the ListList (V) = [f1, f2, · · · , ft−1, ft, ft + 1, · · · ], t = 1, 2, · · ·

Based on the above principles, the following definitions are given:
Definition 1: A is a gesture composed of consecutive frames ft, P is the number
of consecutive frames ft in A, then there is

List (A) = [ft, ft + 1, · · · , ft + p−1], t = 1, 2, · · · ,P = 1, 2, · · ·
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Figure 1: Model of multiple-complex gesture task recognition algorithm.

Definition 2: O is a complex gesture operation composed of multiple
continuous gesture actions A, M is the number of continuous gesture actions
A in O, then there is

List (O) = [A1,A2, · · · ,AM],M = 1, 2, · · ·

Definition 3: T is a multi-complex dynamic gesture task composed of
multiple continuous complex gesture operations O, N is the number of
complex gesture operations O in T, then there is

List (T) = [O1,O2, · · · ,ON],N = 1, 2, · · ·

Definition 4: S is a cutting function that intercepts elements in the List
between a given starting point and an ending point. fhi,j and fei,j are multiple
complex dynamic gestures task T, where the i complex gesture operates the
first frame and the last of the j gesture action Ai.j in Oi, and there is

Ai.j = S
(
List (V) , fhi,j, f

e
i,j

)
= [fhi,j, · · · , f

e
i,j], i = 1, 2, · · · , N, j = 1, 2, · · · ,M

Extraction of Multi-Complex Gesture Feature

For any frame image, the static feature matrix FStatict from f1 to ft can be
defined as

FStatict =


f Static1
f Static2
...

f Statict


f Statict = (Znm

t ,VHOG
t , fTypet )

Where f Statict is the static feature vector of ft, Znm
t ,VHOG

t and fTypet are
Zernike moments (Khotanzad and Hong, 1990) and directional gradient
squares respectively Graph and gesture type characteristics.
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This algorithmmainly uses Zernike moment (Khotanzad and Hong, 1990)
and Histogram of Oriented Gradient (HOG) (Dalal and Triggs, 2005) to
extract static representation features.

(1) Zernike moments

p
′

t(xt, yt) is defined as a two-dimensional matrix of the normalized image
ft, and its Zernike moment of order n m is defined as:

Znm
t =

n + 1
π

∑
xt

∑
yt

p′t(xt, yt)V
nm∗
t (xt, yt), Vnm∗

t (xt, yt) = Rnm
t (ρt)e−jmθt

Rnm
t (ρt) =

(n−|m|)/2∑
s = 0

(−1)s (n− s) ! ρn−2s

s!
(
n + |m|

2 − s
)
!
(
n−|m|

2 − s
)
!

θt = arctan(yt/xt), ρt =
√
x2t + y2t

Where ∗ represents conjugations in complex numbers, Vnm
t is Zernike

polynomial, Rnm
t (ρt) is radial polynomial, n andm are non-negative integers,

and m ≤ n, n−m is odd, ρt is extreme, and θt is polar Angle.

(2) Histogram of Oriented Gradient (HOG)

The gradient of each pixel in the horizontal and vertical directions, as well
as the gradient size and direction of each pixel position in the normalized
input gesture image are calculated respectively:

Gtx (xt, yt) = p′t (xt + 1, yt)− p′t(xt − 1, yt)

Gty (xt, yt) = p′t (xt, yt + 1)− p′t(xt, yt − 1)

∇Gt (xt, yt) =
√
Gtx(xt, yt)2 + Gty(xt, yt)2

θtG (xt, yt) = arctan
(
Gty (xt, yt) /Gtx (xt, yt)

)
Where Gtx (xt, yt), Gty (xt, yt), ∇Gt

(
xt, yt

)
and θtG

(
xt, yt

)
are the gradient

of pixel
(
xt, yt

)
in the horizontal and vertical directions, and the gradient

amplitude and gradient direction respectively.

(3) Dynamic feature extraction

For a frame of image, define p(xct , y
c
t ) as the centroid point of the hand in

image ft. According to the continuous frames in the input video data V, two
vectors can be constructed through the centroid point p(xct , y

c
t ), i.e

Xt = (xC1 ,x
C
2 , · · · ,x

C
t ),Yt = (yC1 , y

C
2 , · · · , y

C
t )

Considering that the range and speed of gesture movement vary from
person to person, the vectorsXt andYt are averaged tomake them translation
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invariant and more stable. We then get two new vectors X
′

t and Y
′

t:

X′t = (xC1 −Xt,xC2 −Xt, · · · ,xCt −Xt), Y′t = (yC1 − Yt, y
C
2 − Yt, · · · , y

C
t − Yt)

Xt =
1
t

∑t

t = 1
xCi ,Yt =

1
t

∑t

t = 1
yCi

Where Xt and Yt are the mean value of Xt and Yt respectively. And the
feature of dynamic gesture FDyn

t could be represented as:

FDyn
t =

[
X′t
Y′t

]
Recognition and Classification of Divisible Multi-Complex Gesture

In order to improve the efficiency of gesture recognition, the concept of
action element is introduced in this paper. L is defined as the length of the
action element. The selection of L value should be neither too large nor too
small. A large L will increase the computational complexity and affect the
computational efficiency, while a small L will affect the recognition accuracy.
In the study of this paper, the selection of the length L of the action element
is verified through the experiment, and L = 5 is set.

The action element is defined as follows: for any frame image, ft and its
front row L − 1 frame constitute an action element Ut, namely

Ut = S
(
List(V), ft−L + 1, ft

)
= [ft−L + 1, ft−L + 2, · · · , ft]

Through the application of action elements, in the process of gesture
recognition, the feature dimension can be reduced to L dimension. If the
parameter L is reasonably selected, the computational complexity and time
can be reduced without sacrificing the accuracy of the recognition algorithm.
Moreover, the computational complexity of the recognition algorithm after
the application of action elements is not greatly affected by the length of
input video data, and even the input data of long and complex tasks can be
recognized and classified quickly and effectively.

EXPERIMENTS

Divisible multi-complex gesture recognition based on word segmentation
processing are presented in two public databases: Sheffield Kinect Gesture
(SKIG) (Liu and Shao, 2013a) and Sebastien Marcel Dynamic Hand Posture
(SMDHP) (Marcel et al., 2000) and a self-built database (Multi-complex
Gesture). The algorithm proposed in this paper is compared on three data sets
above, and the evaluation index is defined as segmentation accuracy (SA).

Experimental Setup

In each database, 20% of the data of various gestures were selected to train
the template gesture feature sequence, and the remaining 80% data was used
to test the accuracy of the algorithm. In the gesture recognition algorithm,
the selection of the length L of the action element is verified through the
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experiment. According to the results, considering the trade-off of recognition
accuracy and computational complexity, the length of action elementL = 30
frames is set. In the gesture segmentation and optimization algorithm, the
error threshold of T1 = 0.3 s and T2 = 2 s is set through the statistics of
the gesture duration in the commonly used gesture database.

The Evaluation Index

In this paper, a Segmentation Accuracy (SA) is defined as an index
to evaluate the performance of the proposed segmentation algorithm.
Segmentation accuracy refers to the percentage of overlap between
experimental segmentation results and target segmentation results in target
segmentation results, which is defined as follows:

SA =
|Fresult ∩ Fgroundtruth|

Fgroundtruth

Where Fresult is the experimental segmentation result and Fgroundtruth is
the target segmentation result. As can be seen from the formula, the higher
the coincidence degree between the segmentation result obtained by the
algorithm and the actual segmentation result, the greater the value of SA. The
larger the SA value is, the higher the segmentation accuracy of the algorithm
is. Otherwise, the lower the segmentation accuracy is.

Performance Comparison

(1) Sheffield Kinect Gesture (SKIG)
The experimental results on SKIG database are shown in the table. In

order to verify the effectiveness of the algorithm, this paper compares
it with RGGP + RGB-D (Liu and Shao, 2013a), 4DCOV (Cirujeda and
Binefa, 2014), Depth Context (Liu, 2016), HOG + LBP (Azad et al.,
2019) and DLEH2 (DLE+ HOG2) (Zheng et al., 2017).

Table 1. Recognition accuracy of SKIG database.

Method Accuracy of Recognition (%)

4DCOV 93.2±0.6
Depth Context 95.2±1.9
HOG+LBP 97.3±1.6
DLEH2 98.2±1.1
RGGP+RGB-D 88.4±1.2
DMGR 99.2±0.6

The DMGR algorithm demonstrates superior performance in gesture
recognition compared to HOG+LBP and DLEH2 methods. While
HOG+LBP employs multi-level time sampling to improve intra-class
similarity and inter-class differences, it lacks focus on spatio-temporal
consistency, which is a key feature of DMGR. This consistency proves
crucial in gesture recognition, as evidenced by DMGR’s superior
experimental results. Although DLEH2 integrates depth sequence gesture
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shape with temporal and spatial features, its reliance solely on HOG for
feature extraction limits its ability to capture overall texture and edge
information. In contrast, DMGR’s comprehensive approach to feature
learning and emphasis on spatio-temporal relationships enables it to more
effectively recognize and interpret complex gesture sequences, resulting in
higher accuracy and robustness in gesture recognition tasks.

(2) Sebastien Marcel Dynamic Hand Posture (SMDHP)
Discriminant Canonical Correlation Analysis (DCCA) (Kim, Kittler

and Cipolla, 2007), Tensor Canonical Correlation Analysis (TCCA) (Kim,
Wong and Cipolla, 2007), Product Manifold (PM) (Lui, Beveridge and
Kirby, 2010), Genetic Programming (GP) (Liu and Shao, 2013b), Tangent
Bundle (TB) (Lui, 2012) and 3D spatio-temporal covariance descriptors
(Cov3D) (Sanin et al., 2013) and other algorithms are compared, and the
comparison results are shown in the table.

Table 2. Recognition accuracy of SMDHP database.

Method Accuracy of Recognition (%)

DCCA 65.5±5.5
TCCA 82.1±2.7
PM 88.4±3.4
GP 85.0±1.1
TB 91.7±0.9
Cov3D 93.3±1.2
DMGR 96.8±0.4

The proposed DMGR algorithm demonstrates superior recognition
performance, surpassing DTW by up to 11.8%. Cov3D ranks
second, effectively maintaining spatio-temporal consistency but lacking
comprehensive gesture description. These results underscore the
importance of balancing static features and dynamic spatio-temporal
consistency in complex gesture recognition, highlighting DMGR’s
efficacy in capturing both aspects for improved accuracy.

(3) Multi-complex Gesture
On the self-built Multi-complex Gesture database, 50% cross

validation is used, i.e. 80% of the data is used for training the model and
the remaining 20% is used for validation. Table 3 shows the recognition
results of the proposed algorithm on theMulti-complex Gesture database,
and the comparison results between the proposed algorithm and SSBoW
(Laptev and Lindeberg, 2005), DSBoW (Laptev et al., 2008), DTBoW
(Hao et al., 2013; Wang et al., 2013), DFW (Kulkarni et al., 2015) and
other algorithms.
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Table 3. Recognition accuracy of multi-complex gesture database.

Motion Point Move Scratch Untie Zoom Rotate None

Recognition
accuracy (%)

94.3 96.7 94.0 90.1 91.2 90.5 98.1
92.5 96.2 93.4 91.5 92.1 91.1 97.1
91.6 95.3 92.1 90.4 91.5 91.3 95.4
93.1 97.6 91.4 91.2 90.2 90.2 96.9
92.8 95.3 92.1 91.1 92.3 91.2 97.9

Average 92.9±1.0 96.3±1.0 92.7±1.0 91.1±0.4 91.5±0.7 91.1±0.2 96.8±0.9

Table 4. Comparison of proposed algorithm with others in multi-complex gesture
database.

Motion Point Move Scratch Untie Zoom Rotate None

SSBoW 65.2±13.5 81.7±11.4 83.8±12.1 88.2±12.5 59.8±18.8 76.5±15.0 74.2±20.7
DSBoW 78.8±10.3 83.8±10.4 87.5±7.2 86.1±4.3 72.4±10.9 81.7±4.0 84.8±19.1
DTBoW 71.9±11.5 91.4±8.3 90.5±3.6 86.7±6.1 90.2±4.7 87.6±3.5 91.1±9.2
DFW 85.8±6.2 94.0±2.3 90.9±7.8 88.3±2.6 88.9±3.4 85.1±2.3 93.2±5.8
DMGR 92.9±1.0 96.3±1.0 92.7±1.0 91.1±0.4 91.5±0.7 91.1±0.2 96.8±0.9

It can be seen that the recognition accuracy of each type of gesture in
the proposed algorithm is above 90%, and the overall average recognition
rate is 92.9%. Compared with other algorithms, the proposed algorithm also
achieves the highest recognition accuracy, especially for the two gestures of
pointing and zooming, which is much higher than other algorithms. Figure 2
shows the frame-to-frame recognition results of each comparison algorithm.

Figure 2: Accuracy of frames recognition on multi-complex gesture database.

In order to verify the effectiveness of the segmentation algorithms, the
segmentation performance of different algorithms is evaluated and compared,
as shown in Figure 2. The DMGR algorithm demonstrates superior
segmentation performance compared to SSBoW, DSBoW, DTBoW, and DFW
methods. Its effectiveness is attributed to the accurate identification of
meaningful gestures and iterative optimization of segmentation boundaries.
This precise segmentation contributes to the algorithm’s higher recognition
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accuracy. In Figure 3, experiments with varying image resolutions reveal
that DMGR maintains over 90% accuracy for resolutions above 160×120.
Performance declines for lower resolutions, with 64% accuracy at 40×30.
However, such low-resolution inputs are uncommon in practical applications,
suggesting the algorithm’s reliability under most real-world conditions.
These findings validate DMGR’s effectiveness in gesture segmentation and
recognition across diverse camera conditions, underscoring its potential for
widespread application in gesture-based interfaces.

Figure 3: Accuracy of action boundary segmentation on multi-complex gesture
database.

Figure 4: Effect of image resolution on accuracy.

CONCLUSION

This study presents a novel algorithm for recognizing multi-complex dynamic
gesture tasks. A key innovation of this research is the development of a
gesture segmentation and optimization algorithm founded on probability
density distribution. This component significantly enhances the accuracy
of gesture segmentation within multi-complex gesture tasks, addressing
a critical challenge in gesture recognition systems. Empirical evaluation
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of the proposed algorithm demonstrates its efficacy, revealing substantial
improvements in both recognition accuracy and computational efficiency
when processing multi-complex gesture tasks.

In conclusion, this research presents a robust and efficient solution to
the challenging problem of multi-complex dynamic gesture task recognition,
paving the way for more sophisticated and natural gesture-based interaction
systems in various technological domains.
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