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ABSTRACT

The scale of terrestrial aquaculture is steadily increasing compared to marine
aquaculture. It is crucial to automatically observe and manage the growth process
in terrestrial aquaculture facilities. However, the need to handle fish out of water to
measure their size and weight can decrease their market value. This paper proposes
the use of cameras to install underwater cameras for the automatic measurement of
fish size, utilizing essential distance detection. This method allows for the relative
estimation of the distance of fish underwater, where the pixel to meter approach is
not feasible. It enables more accurate predictions of fish size by inferring the depth
crucial to the pixel to meter calculation.
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INTRODUCTION

According to the Food and Agriculture Organization (FAO), global
consumption of edible fish increased from approximately 130 million tons
in 2011 to about 150 million tons in 2016, marking a 16.3% increase.
During the same period, per capita sea-food consumption also rose from
18.5 kg to 20.3 kg, an increase of approximately 9.7%, indicating a
growing demand for seafood (FAO, 2018). Notably, major aquaculture-
leading nations like Norway have been early adopters of the industrialization
and technologization of aquaculture, and more recently, have been pushing
forward with the smartification of aquaculture through the application of
ICT technologies (Chang, 2017). Consequently, energy costs constitute a
significant portion of operational expenses in fish farming, prompting efforts
to reduce these costs.

Terrestrial aquaculture technology has evolved over centuries, but
technological research and development have progressed at a relatively slow
pace. In this field, key challenges such as measuring the size of fish are being
addressed by integrating the latest technologies. Research by Shi et al. (2020)
presents a method for automatically measuring fish standard length non-
intrusively using a stereo vision system implemented with LabVIEW, which
greatly benefits the aquaculture industry. Shafait et al. (2017) developed

© 2025. Published by AHFE Open Access. All rights reserved. 141

https://doi.org/10.54941/ahfe1005819


142 Kim et al.

a semi-automatic measurement technique using stereo video technology,
which saves time and costs compared to manual measurements and reduces
measurement errors. Recent advancements in AI technology have enabled
more diverse and complex measurements. Research by Ranftl et al. (2020)
reports significant improvements in monocular depth estimation techniques
through mixed training on various depth datasets and the development of
a new loss function, enhancing generalization and accuracy. Additionally,
Yang et al. (2024) have produced effective outcomes by combining
depth estimation and semantic segmentation using semi-supervised learning
techniques with unlabelled data. Yang et al. (2022) explains the differences
in measuring the distance of objects underwater and in air using optical
image sensors. The study highlights that due to differences in the refractive
index underwater, objects appear larger than they are. This difference is a
crucial factor to consider when capturing images in aquatic environments.
The study analyses images taken underwater to confirm these differences,
noting that with refractive indices of 1.0 in air and 1.33 underwater, objects
appear approximately 3/4 closer than they actually are. This phenomenon
significantly impacts the measurement of object size and distance underwater
(Yang et al., 2022).

To correct these phenomena, this paper proposes a technical approach to
reduce depth perception errors in objects during underwater photography.
By considering the difference in refractive index in aquatic environments, a
correction equal to the refractive index is applied to the estimated distance
of each pixel. This correction process enables more accurate estimation
of the size and distance of objects, providing essential information not
only for measuring fish in aquatic environments but also for various
underwater research and activities. Therefore, the aim of this paper is to
accurately estimate the relative depth of fish in underwater environments,
thereby improving the accuracy of object depth measurements. Experiments
conducted in various aquaculture settings allow for the non-intrusive, real-
time prediction of fish size.

Experiments

The Depth Anything model (Yang et al., 2024), as shown in Figure 1,
presents a robust approach to monocular depth estimation using large-
scale unlabelled datasets. As part of emerging foundational models in
computer vision, this model is characterized by its ability to utilize unlabelled
data without specific customization, employ a simple yet effective learning
strategy, and effectively generalize joint learning of labelled and unlabelled
data. It leverages approximately 62 million unlabelled images to expand
data diversity and reduce generalization errors. This is crucial as acquiring
large-scale labelled datasets for depth estimation can be cost-prohibitive
and labour-intensive. The model uses auxiliary supervision techniques that
inherit semantic prior knowledge from data augmentation and pre-trained
encoders to enhance robust representation learning. This approach helps
the model better handle unseen images by understanding advanced scene
semantics. Consequently, Depth Anything trains in a self-learning manner
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using labelled images and pseudo labelled images (synthetic labels) generated
from unlabelled datasets. This method improves the model’s generalization
capabilities across various scenes and conditions.

Figure 1: The diagram illustrates the “Depth Anything”(Yang et al., 2024) pipeline (see
Figure 1). Solid lines represent the flow of processing for labelled images, whereas
dotted lines indicate the flow for unlabelled images. The ‘S’ symbol signifies the
addition of strong perturbations used in training models with different types of images
and labels.

In an indoor aquaculture environment, various fish species and
environmental settings were recorded using GoPro 8 monocular lens
equipment. Figure 2 displays the results derived from employing the
Depth Anything model to estimate depth values of images capturing three
distinct fish species. While the results intricately capture the outlines of
most fish and effectively represent varying depths based on the distance of
the fish, several issues persist. In the second image, there is a region where
fish overlap exquisitely, displaying boundaries too faint for fish detection.
Moreover, in the third image, a fish located at the top right corner remains
indistinguishable in the depth image. These instances illustrate the limitations
of standard processing in scenarios characterized by severe object overlap and
considerable distance variations.

Figure 2:Results of depth estimation for various fish in underwater environments using
a monocular lens camera: (a) Configuration of an underwater studio setting, (b) Depth
prediction results for the (a) image, (c) Aquaculture farm A environment (red circles
indicate undetected fish), (d) Depth prediction results for the (c) image, (e) Aquaculture
Farm B environment (red circles indicate undetected fish), (f) Depth prediction results
for the (e) image.
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We utilized metric depth to perform Point Cloud Data (PCD)
transformation of underwater fish images captured through a 2D monocular
lens and assessed the accuracy. For the experiment, a bar set at 30 cm was
placed at the bottom of the image to indirectly infer the size of the fish.
The results, as shown in Figure 3, confirmed that the two fish appeared at
different distances. Figure 3-a represents the PCD from the front view, while
Figure 3-b depicts a view looking down vertically from the surface. Through
Figure 3-b, we can see that the fish are positioned at different locations.

Figure 3: Changes in representation when converting 2D images of underwater fish to
3D PCD: (a) Frontal view based on the 3D PCD output, (b) Top view based on the 3D
PCD output.

Standard length measurements were selected from the fish’s mouth to the
mid-point of the tail fin based on the PCD results. Due to the inability of a
monocular lens to accurately predict curved surfaces, the three-dimensional
straight-line distance was calculated in terms of pixels per interval.Measuring
the length of the fish from Fig. 3-b, it was possible to calculate relative
distances as shown in Table 1. The final length measurements varied
depending on the FL and the lengths along the x and y axes.

The Standard length from mouth to tail is calculated using Equation (1)
as 0.1370 meters for Fish1 and 0.1858 meters for Fish2. Considering the
difference in length due to refraction in water, by multiplying by a refractive
index of 1.33, the final lengths are approximately 0.182 meters for Fish1 and
0.247 meters for Fish2. These measurements closely resemble the reference
green stick of 30 cm.While direct physical contact to verify the sizes of the fish
in the photos was not possible due to aquaculture farm conditions, taking into
account that the average size of the fish in the aquaculture tank is about 24
cm, the average prediction error compared to the actual fish sizes is estimated
to be around 10%.

d =
√
x2 + y2 + z2 (1)
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The body length from mouth to tail is calculated using Equation (1)
as 0.1370 meters for Fish1 and 0.1858 meters for Fish2. Considering the
difference in length due to refraction in water, by multiplying by a refractive
index of 1.33, the final lengths are approximately 0.182 meters for Fish1 and
0.247 meters for Fish2. These measurements closely resemble the reference
green stick of 30 cm. While direct physical contact to verify the sizes of
the fish in the photos was not possible due to aquaculture farm conditions,
taking into account that the average size of the fish in the aquaculture tank
is about 24 cm, the average prediction error compared to the actual fish sizes
is estimated to be around 10%. The purpose of this paper is to correct the
standard length of fish based on their depth. Therefore, the standard length of
the fish was calculated as the three-dimensional straight-line distance from
the pixel representing the fish’s mouth to the central pixel of the tail fin,
derived using Equation (1).

Table 1. Fish body length calculation: coordinate points and distance data.

Fish X Y Z Distances Predict Length

1 Mouth −0.0977 0.1291 1.3186 1.5 0.1858*1.33 = 0.247114
Tail 0.0834 0.1704 1.3246

2 Mouth −0.0633 −0.0700 1.1910 1.2 0.1370*1.33 = 0.18221
Tail 0.0584 −0.0757 1.1283

Figure 4: Method and location for measuring the standard length of fish.

CONCLUSION

In smart aquaculture, optimal growth management and production
forecasting significantly aid farm operations by reducing cultivation costs and
adjusting shipping times. With AI-based systems capable of calculating fish
body length, it becomes possible to deploy automated systems that determine
the optimal time for shipment based on monitoring environments. However,
for underwater imaging, the resolution varies greatly depending on the water
quality, necessitating distance corrections even when 2D data is available to
calculate fish height and length. Additionally, algorithms capable of accessing
depth values are required for calculating weight.



146 Kim et al.

In smart aquaculture, optimal growth management and production
forecasting directly facilitate the reduction of cultivation costs and the timing
of shipments, thereby aiding farm operations significantly. Particularly, the
technology to estimate fish size and weight through underwater imaging is
essential. With AI-based techniques to calculate fish standard length and
estimate weight, it becomes possible to avoid the labour-intensive tasks of
manually removing fish to check their size and weight. Instead, an automated
system could be implemented in a monitoring environment to determine
the optimal time for shipment. However, to integrate AI technology, it is
indispensable to have a system for viewing underwater images in the farm
and data for AI training in place beforehand. Given the variable resolution
of underwater images depending on water quality, 2D data can be used
to calculate fish standard length, but corrections based on distance are
necessary. Additionally, an algorithm capable of accessing depth values is
required for accurate weight estimation.
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