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ABSTRACT

In this article, we present a concept for generating collaborative behavior for a
heterogeneous team of drones with different capabilities that allows executing
complex tasks in future military Manned-Unmanned-Teaming (MUM-T) helicopter
missions. In these missions, the pilot is required not only to control their own
helicopter but also to manage a large number of drones. This scenario quickly
creates excess workload, as well as possible underusage of available resources. To
prevent this, we create an easy-to-use command interface for the pilot that allows
to assign multiple tasks to the drones by selecting only essential parameters. These,
in turn, are used to automatically distribute the resources and generate an easily
adjustable mission plan. This concept will enable complex multi-drone missions and
will be integrated into our mission and cockpit simulator environment for testing and
verification by pilots from the German Army.
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INTRODUCTION

MUM-T (Manned-Unmanned Teaming) missions consider the cooperation
between manned and unmanned aerial vehicles (UAVs) to pursue a common
goal. The human pilot specifies the assignments to be completed and assigns
them to each UAV of the team. Flying the helicopter while simultaneously
tasking and monitoring the unmanned vehicles causes considerable mental
workload for the pilot.

Therefore, the way tasking is done is crucial, and it has been a long-
standing focus of our research group. One of the main design patterns used is
task-based guidance. This concept can be defined as the sharing of authority
and pursuit of common goals by all ranks (Uhrmann & Schulte, 2012). In
this case, the human agent delegates only high-level tasks to UAV agents,
which then must understand, break down, and execute those tasks (Dudek&
Schulte, 2022). A task can be defined by a composition of (Lindner, Schwerd,
& Schulte, 2019):

• A mission target: which object the mission is performed on.
• An action: how the mission is accomplished.
• Qualifying information: mission-specific parameters or constraints.

For the assignment to succeed, it’s important to balance human and
automated tasks. Too much automation could cause the pilot to lose trust
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in the system, while too little automation may overwhelm the pilot with
too many tasks. Therefore, it is crucial not only to have the right high-
level parameters available, but also to provide adequate feedback. This
feedback can come from assistance systems or other means to strive for
transparency (Wright, Chen,& Lakhmani, 2019). Assistance systems analyze
current tasks and identify if it could produce excessive workload. If so,
a relevant intervention is done (Brand & Schulte, 2020). Transparency-
focused feedback focuses on the amount of system information that should
be provided to the pilot. Even though intuitively an over-availability of
information should demand excessive amounts of pilot attention, it has been
shown that there is not a significant increase on workload, and that there is
higher trust in the system (Wright, Chen, & Lakhmani, 2019).

To tackle this issue in a MUM-T mission with a high number of UAVs, an
automated tasking process is proposed, which can be decomposed into four
parts:

1. Pilot selects a high-level task.
2. The automation system generates a proposed plan to achieve said goal,

which includes:

a. Selecting the suitable UAV team for the task.
b. Distributing sub-tasks by the UAVs.
c. Selecting certain parameters to perform the task optimally.

3. The pilot approves the plan or requests that it is regenerated.
4. The plan is fulfilled, and feedback is returned to the pilot.

Since the tasks that the pilot can choose from are highly generic, it is
necessary to define for each one what is the expected UAV behavior and
other parameters, such as mission success metrics. This is explored in detail
for two specific use-cases: a coordinated attack, where multiple targets need
to be engaged at the same time, and reconnaissance, where it is necessary to
acquire information on a location or target.

This contribution also focuses on how to apply this method to an attack
helicopter simulator with two main distinct types of UAVs: higher value
drones that can be equipped with many different types of sensors and
weapons; and air launched effects (ALEs) that are small disposable flying
objects that can be deployed from the ownship, other UAVs, or even from
the ground (launched effects, LE).

DESIGN PATTERNS

The system introduced can be described following two distinct architectures,
as proposed by (Schulte, Donath, & Lange, 2016), that can be observed in
Figures 1 and 2. The human pilot assigns a task to the UAV agents. In the
first example, the assignment goes to a central agent, which then breaks it
down into sub-tasks and distributes them to each UAV agent. Therefore, in
this case, the individual agents are solely responsible for accomplishing their
own small task.
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In the latter case, the goal is given to all UAV agents. These must then
coordinate between themselves regarding the best way to complete the overall
task successfully, and then execute their respective parts.

Figure 1: Work system for MUM-T missions with UAV coordination by central planning
agent.

Figure 2: Work system for MUM-T missions with UAV coordination with distributed
planning.

HUMAN-SYSTEM INTERACTIONS

To keep the workload at manageable levels only very simple parameters
which represent high-level tasks may be available to the pilot. This section
focuses on this pilot-system interaction, therefore the generation of UAV
behavior is regarded as a “black box”, to be explored in the next section.

As we are considering the context of military missions, the high-level tasks
considered are commonly used tactics, displayed on a “Quick Tactics”menu.
Our two use cases represent these tactics: the coordinated attack, where
several targets need to be engaged simultaneously; and reconnaissance, where
an area, point or target needs to be analyzed.

Upon selecting the desired tactic, the pilot must also choose some broad
configurations, for example whether some of the assets should be kept out of
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the automation to be used in a different situation. Additionally, some of the
parameters must be set by the human operator, such as target confirmation.

During the mission and upon its completion, it is important to provide
adequate feedback in order to keep the pilot aware of the current situation
while refraining from overloading the pilot’s attention.

PROBLEM DEFINITION

To achieve task success, it is important to describe how to get to the desired
UAV behavior. Firstly, how each task is broken down; then how success is
defined within each smaller task so their individual objective can be set, and
then, how the task allocation is done for each UAV and how the task itself is
performed.

The problem can be formally formulated (Khamis, Hussein, & Elmogy,
2015) as finding the optimal allocation (A) of a set of tasks (T = {T1, T2, …,
Tm}) to a set of UAVs (U = U1, U2, …, Un)

A = T→ U. (1)

Such that the probability of task (P(A)) success is maximized:

max
A

P
(
A

)
(2)

ASSET ALLOCATION

As a first approach, we are considering a centralized solution solely based
on resolving the optimization problem. In other words, finding the matrix A
(that makes the correspondence between UAVs and tasks) that maximizes the
probability of success. However, this solution entails a hierarchy where there
is an agent that commands all UAVs. Although this approach results in a very
efficient usage of resources, it is also associated with a lack of robustness and,
lastly, a low potential for scalability, as too complex optimization problems
are associated with considerable computational times, which may not be
realistic for real-time plan generation. A way to solve this last issue is to
use metaheuristic algorithms, such as using a multiple travelling salesmen
formulation, which, although they may not find globally optimal solutions,
usually provide satisfactory results (Badreldin, Hussein, & Khamis, 2013).
Once the task allocation is completed, the central agent must then compute
the optimal parameters for mission success for each UAV.

Another way to achieve adequate task allocation for the different assets
is to use decentralized approaches, which are usually more robust, highly
scalable and require less communication. However, these methods may
provide sub-optimal solutions (Khamis, Hussein, & Elmogy, 2015). Besides,
extracting feedback may pose an additional challenge, as the individual
solutions may be so distinct and incomparable that creating a success
criterion for the whole team may not be possible.

One example are market-based algorithms, such as auctions. In this case,
each UAV communicates its utility (for example, the probability that it has of
completing the task successfully) for each subtask to the current agent with
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the role of coordinator. Then, the coordinator evaluates the “bids” based
on an optimization strategy and selects the “winning” UAV. The process is
then repeated until all the subtasks have been assigned. After the process has
been completed, each UAV is responsible for computing the optimal mission
parameters to complete the respective subtask.

USE-CASES

Coordinated Attack

Once the pilot selects this task, a set of automated processes begin. Figure 3 is
a flowchart on how the interaction between pilot and system is carried out.
Firstly, the interface shows the targets available to be selected by the pilot.
Then, the automation is activated, and a plan is proposed. The pilot must then
accept, decline, or make small alterations to the plan. As this is an engagement
task, two assignments are imperatively done by the pilot: confirmation that
each target is, in fact, a threat and confirmation of a kill, after engagement.
Currently, the pilot needs to select each target individually to sense it with the
sensor (from the ownship or from an UAV) and to perform the classification
manually. To make the process faster, we propose having this procedure done
during the preliminary transfer to target location, and having the sensors
automatically point to each target and have a “confirm target” button. The
same process is then repeated for battle damage assessment, but with a
“confirm destroyed” button.

Looking now into the black box “UAV Behavior Generator”, it is first
necessary to define the desired goal. In this case, the task is successful once
all targets are engaged and destroyed. Therefore, it is crucial to define the
probability of kill, once the target is hit, P (K|H) , along with the probability
of hitting the target, P(H). To be consistent with the model used in the
simulator, we consider that a precise number of hits,N, is necessary to achieve
a kill (Chircop & Kachoyan, 2018), therefore the previous probability is
always 1 after N hits. The probability of kill also changes with the type of
weapon that is considered, so, for each UAV. For example, if we consider a
standard number of hits for P (K|H), and a certain UAV has a weapon where
one hit is equivalent to two standard ones, this expression must be updated
accordingly.

A UAV can only be considered capable of engaging a certain target if the
probability of kill is above a certain defined threshold. Consequently, it may
be necessary to consider more than one UAV to engage a single target.

The initial proposed architecture for these types of missions uses a
centralized agent to task the UAVs. Usually, this process is relatively
computationally light (as it is only necessary to optimize which UAV covers
each target, with each weapon, and what the velocity of approach needs
to be), and so it is possible to get optimized results with a satisfactory
computational time. As might be expected, if the parameters increase in
complexity (for example, to also calculate the best trajectory with an optimal
angle of approach), using a centralized architecture may no longer be
possible.
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Figure 3: Diagram for coordinated attack system-pilot interaction.
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Reconnaissance

The approach for the reconnaissance interface is significantly distinct, as
there is no need for target confirmation or battle damage assessment,
therefore the interactions (decision and input parameters) by the human
operator are significantly reduced. This is evidenced by Figure 4, that presents
this process. The pilot only needs to select the mission goals (selecting if it is
to survey a point or an area, and if the latter, if it is time-sensitive or not) and
set the respective locations. In this instance it is very important to provide
appropriate feedback to the pilot. For example, in an extensive search it is
only necessary to provide minimum feedback, unless the search finds any
targets, or the mission is completed. On the other hand, if the goal is to
survey a target, the best approach may be for the trajectory of the UAV to be
automated, but for the pilot to assess via sensors the level of threat.

Figure 4: Diagram for reconnaissance attack system-pilot interaction.
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In reconnaissance missions, the goal can be to either sweep an area for
potential targets or to surveil a particular point or target. In the first case, the
mission is successful if all the targets in the area are detected. Although amore
extensive sweep is usually a “background” task for the pilot, within a battle
context it is not possible to have the UAVs occupied during a time frame of,
for example, hours. Therefore, it is always relevant to set a time limit on the
UAVs’ task execution. This maximum time frame, along with the size of the
area chosen by the pilot, determine the optimal number of UAVs to be used.
Consequently, the optimization to be done is to be done is determining the
UAV trajectories that maximize the probability to find all targets. to be done
is determining the UAV trajectories that maximize the probability to find all
targets.

In the case where the objective is to surveil a single point or target, the goal
is usually to survey the area around the target in a certain pattern trajectory,
which will depend on the terrain or on the geometry of the object.

Another criterion for mission success that may be relevant is the ability to
complete the mission in high-risk areas without the loss of the UAV. This can
be achieved, for example, if we include constraints for concealed flight in the
optimization.

Reconnaissance missions usually entail computing an optimized trajectory
to maximize surveillance capabilities. Due to the inherent complexity and
high number of the variables to be optimized (trajectory points, velocity and
asset distribution) a distributed architecture is proposed.

CONCLUSION

This work gives a holistic overview of how UAV team tasks can be
implemented. Firstly, with the design of a human-systems interaction
approach that aims to find the balance between minimizing the pilot’s
workload and maintaining confidence in the system by not over-automating
it. Then, the drone behavior generation is considered, firstly bymodelling use-
cases and defining success metrics, and then by considering several arguments
and architectures to be used. Implementing these two use-cases, and trying
different approaches is going to be the first step into studying UAV team
task behavior in our combat helicopter simulator. Then, the system is to be
evaluated experimentally by pilots from the German Army.
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