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ABSTRACT

Thermal comfort is crucial in electric vehicles (EVs), especially in shared mobility
scenarios with diverse passenger preferences and dynamic cabin conditions.
Traditional climate control systems struggle to provide personalized comfort in such
environments. This study introduces a novel approach using a single infrared (IR)
fisheye camera to monitor and optimize thermal comfort across the vehicle cabin. The
camera captures a 360-degree view, enabling real-time tracking of body temperature,
heat dissipation, and environmental factors like solar heat gain. Machine learning
models process thermal images to identify and predict comfort patterns, guiding
the HVAC system for personalized adjustments. The approach, will be validated in
an autonomous electric commuter vehicle and supported by experiments, aims to
improve comfort, reduce energy use, and lower system costs. Beyond EVs, this
method has applications in addressing motion sickness and optimizing indoor climate
control.
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INTRODUCTION

Thermal comfort of passengers in vehicle cabins is a multifaceted
phenomenon influenced by a wide range of factors. Traditional air
conditioning systems in vehicles often fail to cater to the individualized
thermal preferences and perceptions of passengers (Diga et al., 2021; Yun
et al., 2021; He et al., 2022; Donsì et al., 2022). This shortfall arises from a
limited or overly simplistic approach to addressing the complex interactions
between psychological and physiological determinants of thermal comfort
(Chen et al., 2024).

A promising strategy for addressing these challenges lies in the
development of predictive models capable of accurately estimating
passengers’ thermal perception based on thermal imaging data and relevant
environmental variables (Zhou et al., 2024). These models enable air
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conditioning systems to respond in real time, dynamically adjusting the cabin
climate to align with individual passenger comfort requirements.

Thermal imaging provides a precise and immediate method for capturing
the human body’s thermal response to varying climatic conditions. Existing
studies have explored the use of conventional thermal cameras in vehicle
settings to monitor localized temperature distributions for improving HVAC
control (Yang et al., 2020). However, these approaches are often limited
by their restricted field of view (Zheng et al., 2024), making them less
effective for monitoring dynamic and shared mobility scenarios with multiple
passengers. To address this limitation, this study leverages a custom-designed
360-degree fisheye infrared camera to comprehensively capture thermal data
across the entire cabin, providing a holistic view of passenger thermal
behavior and environmental interactions.

This research is part of the C2CBridge project led by the Karlsruhe
Institute of Technology in collaboration with the Karlsruhe Mobility High
Performance Center, which focuses on developing next-generation mobility
solutions for shared transportation in autonomous vehicles. One of the
project’s goals is to enhance the passenger experience by improving factors
such as thermal comfort using innovative HVAC systems. By integrating this
approach into the C2CBridge vehicle, we aim to create a more personalized
and efficient climate control system.

The aim of this study is to develop a robust and efficient predictive model
for assessing passengers’ climatic perception. By incorporating this model
into the air conditioning system of the C2CBridge vehicle, we anticipate
a significant improvement in passenger thermal comfort. In addition to
enhancing individual satisfaction, these advancements could contribute to
the broader acceptance and adoption of this mode of public transportation.

METHODS AND MATERIALS

This study introduces a thermal comfort prediction system that utilizes
an array of MLX90640 long-wave infrared (IR) cameras to monitor and
assess the thermal states of passengers within vehicle cabins. All temperature
measurements are recorded in degrees Celsius (◦C), and all scales in future
figures within this study will also be presented in Celsius.

The cameras are temperature calibrated using a blackbody reference source
with emissivity ε = 0.98, consistent with human skin emissivity. A flat-field
correction technique is employed to remove fixed-pattern noise, ensuring
uniform pixel response across the entire array. The sensor outputs are
temperature-compensated using Equation (1):

Tcorrected = Tmeasured − Tambient + Calibration Offset

Where:
Tcorrected: Raw temperature reading from the pixel

Tambient: Camera core temperature measured via onboard thermistor

Calibration offset is experimentally determined for each camera
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The cameras have a resolution of 32x24 pixels and a field of view of
110◦ by 75◦. Due to the high cost of commercially available 360-degree
thermal cameras, multiple MLX90640 sensors are arranged to simulate a
360-degree thermal view. To fabricate this view, four MLX90640 sensors are
positioned 90◦ from each other to maximize overlap and coverage. Custom
software seamlessly stitches the individual thermal images from each sensor
into a unified panoramic thermal map of the vehicle interior. Homography
transformations and bilinear interpolation serves to align the overlapping
regions and to eliminate the spatial gaps between the adjacent cameras. For
clearer analysis, the figures presented in this study use the expanded 360◦

rectilinear view, rather than the wide, distorted fisheye-style 360◦ view.
To assess the thermal sensation and comfort of passengers, this study uses

the “human thermal comfort model” according to H. Zhang (2003). Like
Zhang we use a Thermal Sensation Vote (TSV) scale, where −4 corresponds
to extremely cold, 0 indicates a neutral sensation and +4 represents a
sensation of extremely hot. This is supplemented by a comfort scale, where
−4 means very uncomfortable and +4 is very comfortable.

Data Acquisition

Thermal data acquisition is conducted using the centrally positioned
360-degree camera array (Figure 1), providing a comprehensive view of
the vehicle cabin and its occupants. This configuration eliminates the
need for multiple cameras or environmental sensors, simplifying hardware
requirements. The multi-camera array captures thermal images using the
Ironbow/Inferno palette, where pixel color corresponds to relative surface
temperatures. These images are recorded at a frame rate of 5 frames per
second.

Figure 1: Camera array mounted on the interior roof of the cabin (self-created).

The experimental environment simulates various cabin conditions. These
consist of the Static scenarios where passengers remain seated in pre-
determined configurations, allowing baseline calibration of the system for
thermal and positional variations. On the other hand, theDynamic scenarios
simulate Passengers who enter, exit, or change positions to test the system’s
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adaptability to real-world mobility patterns. Thermal imaging is performed
under different ambient temperature and airflow settings to reflect diverse
operating conditions (Figure 2). The data was collected in a Mercedes Vito
9-seater.

Participants provide self-reported TSVs on a scale of extremely cold (−4) to
extremely hot (+4) respectively very uncomfortable (−4) to very comfortable
(+4) regularly during the whole experiment, offering subjective thermal
comfort feedback to label the collected thermal data. Demographic details,
including age and gender are recorded to ensure dataset diversity.

Figure 2: View from the thermal camera array, showing one passenger seated in the
rear left seat (self-created).

Thermal Feature Extraction and Analysis

Once thermal data is acquired from the camera array, the subsequent
stage focuses on preprocessing the images, extracting relevant features, and
analyzing dynamic passenger behavior. Given the low resolution of each
individual thermal sensor, each image follows a pre-processing pipeline which
incorporates image upscaling and noise reduction techniques to enhance
spatial detail while preserving critical features. Gaussian smoothing with a
kernel size of 3 × 3 pixels is applied to reduce random thermal noise, while
bilateral filtering is used to increase the effective resolution while maintaining
fine details. Using bicubic interpolation, the images are upscaled to a target
resolution of 128 × 96 pixel. Figure 3 depicts an unprocessed image, while
Figure 4 shows an image after preprocessing.

To isolate passenger-specific thermal regions and ensure accurate feature
extraction, the object detection algorithm YOLOv5, is utilized. Regions of
interest (ROIs) representing passenger-specific thermal zones, such as faces,
torsos, and seating areas, are identified in the thermal images. These regions
are then dynamically segmented from the stitched panoramic view, ensuring
that localized thermal data is captured for each occupant. To improve
accuracy, the identified ROI is normalized to compensate for varying thermal
image brightness caused by external factors, including sunlight or reflections.

After preprocessing, the cropped and normalized ROIs undergo spatial
feature extraction to identify thermal patterns and heat distribution. A
convolutional neural network (ResNet-50) with several convolutional and
pooling layers (see Table 1) to extract hierarchical thermal features is
employed for this step. Key features extracted from the CNN include
Mean surface Temperature (of each ROI), Temperature gradients (spatial
variations) and thermal hotspot/coolspot Regions:

Thermal comfort is dynamic and evolves over time due to changes in
passenger movements, posture, and cabin conditions. To capture these
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Figure 3: View from the thermal camera array, showing an unprocessed image with
one passenger seated in the rear left seat and another passenger occupying the left
seat in the last row (self-created).

Figure 4: Image from the thermal camera array, after preprocessing (self-created).

Table 1. CNN architecture for thermal feature extraction.

Layer Type Layer Details Input Size Output Size Purpose

Input Layer Raw stitched thermal
image

128× 96 x 1 128× 96 x 1 Receive the thermal
image

Conv1 7× 7 Conv, stride 2,
ReLU activation

128× 96 x 1 64× 48 x 64 Extract low-level spatial
thermal features

Pooling1 3× 3 Max Pooling,
stride 2

64× 48 x 64 32× 24 x 64 Reduce dimensions and
retain key spatial
features

Residual
Block 1

3× 3 Conv +
BatchNorm + ReLU x 2

32× 24 x 64 32 x 24× 256 Capture mid-level
spatial features

Residual
Block 2

3× 3 Conv +
BatchNorm + ReLU x 3

32× 24 x 256 16× 12 x 512 Extract higher level
localized patters

Residual
Block 3

3× 3 Conv +
BatchNorm + ReLU x 4

16× 12 x 512 8 x 6× 1024 Deep feature extraction
for thermal regions

Residual
Block 4

3× 3 Conv +
BatchNorm + ReLU x 3

8× 6 x 1024 4 x 3× 2048 High level feature
aggregation

Global
Average
Pooling

Spatial average across
feature map

4× 3 x 2048 1× 1 x 2048 Aggregate spatial
features into a feature
vector

Fully
Connected

Dense layer with 512
neurons + ReLU

1× 1 x 2048 1 x 1× 512 Reduce dimensionally,
maintain key features

Output Layer Fully connected, 3
neurons (Softmax)

1× 1 x 512 1 x 1× 3 Predict Thermal
Sensation Vote

temporal dependencies, a Long Short-Term Memory (LSTM) network is
integrated into the analysis pipeline. LSTM layers (see Table 2) analyze
sequential thermal data to model how passenger-specific temperature
distributions change over time. The sequence length is configured to capture
changes in passenger conditions due to posture adjustments, exposure to
airflow, or evolving environmental factors.

The input is composed of a 512-dimensional feature vector from the CNN
at the time t, representing spatial thermal attributes. The sequential input
is denoted as a sequence X = {x1,x2 . . . xt} where xt represents the feature
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vectors extracted from the thermal image at the t-th time step. The order
of operations described in Table 3 explains the flow of computational steps
inside the LSTM cell at each time step t.

Table 2. LSTM parameter configuration.

Layer Type Layer Details Input Size Output Size Purpose

Input Layer Time sequenced feature
vectors

T x 512 T x 512 Accept input time series
of feature vectors

LSTM Layer
1

128 LSTM units, return
sequences = True

T x 512 T x 128 Learn short-term
temporal dependencies

Dropout
Layer

Dropout rate = 0.2 T x 128 T x 128 Regularize and reduce
overfitting

LSTM Layer
2

64 LSTM units, return
sequences = False

T x 128 64 Capture long-term
temporal dependencies

Fully
Connected

Dense layer with 32
neurons + ReLU

64 32 Further reduce temporal
feature dimensionality

Output Layer Dense layer with
Softmax activation

32 3 Predict (TSV)

Table 3. Summary table of computational steps.

Step Computation Purpose

Forget gate ft = σ (Wf ·
[
ht−1 , xt

]
+ bf ) Scale down irrelevant parts of the

previous cell state.
Input gate it = σ (Wi ·

[
ht−1 , xt

]
+ bi) Determine importance of the current

input for cell state updates.
Candidate
cell state

C̃t = tanh(WC ·
[
ht−1 , xt

]
+ bC) Compute proposed updates to the cell

state based on new input.
Updated
cell state

Ct = ft � Ct−1 + it � C̃t Combine retained past information
with new updates.

Output gate ot = σ (Wo ·
[
ht−1 , xt

]
+ bo) Determine the extent of the exposure

of the cell state to the new hidden
state.

Hidden
state update

ht = ot � tanh(Ct) Update the hidden state, summarizing
the temporal thermal patters relevant
for predicting thermal comfort.

The final hidden state update ht is used for the TSV prediction, it firstly is
passed through a fully connected layer:

z =Wfc · hT + bfc

The transformed feature vector z, representing the passengers evolving
thermal state is then converted into a probability distribution using Softmax
activation:

p(y) =
exp(zi)∑K

j = 1 exp(zj)

With the result, a classification of the TSV can be made:

ŷ = argmaxp
(
yi
)
, i ∈ {−4,−3,−2− 1, 0, + 1, + 2, + 3, + 4}
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Where i corresponds to the thermal comfort categories.
The LSTM outputs a temporal feature representation that complements

the CNN-extracted spatial features. This combined representation provides a
robust basis for predicting thermal comfort levels, capturing both the current
thermal state and its evolution over time.

Thermal Comfort Prediction and HVAC Control

Predicted TSV values guide the vehicle’s HVAC system (parameters such
as Airflow rate (Q) and Vent Temperature (Tvent)) to ensure personalized
comfort. These adjustments are performed dynamically and independently
for each occupant.

RESULTS

This study evaluates the effective integration of an infrared camera array with
the ResNet50 deep neural network and Long Short-Term Memory networks
for optimizing thermal comfort in dynamic environments, such as shared and
autonomous mobility. The thermal images, captured using the IR camera
array from 5 individuals during winter, were processed by the ResNet50
model to classify thermal conditions into different categories.

The ResNet50 model, trained with 50 epochs, an initial learning rate of
0.0001, and a batch size of 16, achieved a good performance, demonstrating
its ability to classify thermal zones effectively. The model’s capability to
recognize key spatial features of thermal images without requiring additional
sensor data highlights the efficiency of thermal image-based approaches for
personalized thermal comfort optimization.

One key finding from initial trials is the system’s capacity to track multiple
passengers and adapt to changes in occupancy. The camera’s 360-degree field
of view allows for real-time adjustments based on occupancy patterns, even
in vehicles with highly variable seating arrangements.

CONCLUSION

Beyond its primary application in vehicles, the camera solution proposed here
has potential for other industries. The system could be adapted for use in
other forms of public transportation, or even personalized indoor climate
control systems in buildings. Furthermore, the system’s potential to address
motion sickness, a common issue in autonomous vehicle environments, could
further bolster its relevance in future transportation systems.

Although the initial results are promising, future research will be
necessary to refine the system and optimize its performance across various
environmental conditions and vehicle layouts. Further investigation will
focus on expanding the dataset to include different weather conditions and
a larger and more diverse number of participants. More extensive testing
is required to fully evaluate its performance and to assess long-term energy
savings. Newer machine learning models could further enhance the predictive
capabilities of the system.
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