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ABSTRACT

The global pet care market is booming, with pet owners increasingly seeking
ways to understand and improve the well-being of their animal companions. This
demand extends beyond domestic pets to working animals, such as those in law
enforcement and the military, and even to livestock in the agriculture industry.
Accurate and timely diagnosis of health issues is crucial in all these sectors, but
traditional methods often rely on subjective observations and infrequent veterinary
visits. This paper introduces a novel Internet of Things (IoT) platform designed to
bridge this gap by providing continuous, objective monitoring of animal behaviour
and activity. Our platform employs a non-invasive, wearable device equipped with
an array of sensors that capture physiological and movement data. The collected
data is visualized through an intuitive dashboard accessible to pet owners, trainers,
and veterinarians. This dashboard provides valuable insights into the animal’s daily
routines, activity levels, and potential anomalies. For pet owners, this translates to
a deeper understanding of their pet’s needs and early detection of potential health
concerns. For trainers, the platform offers data-driven feedback to optimize training
programs and monitor progress. Veterinarians can leverage the platform to access
objective data, aiding in diagnosis and treatment planning, and enabling remote
monitoring of patients. This research details the development and validation of
the IoT platform, including the sensor technology, machine learning models, and
dashboard design. We present results from a pilot study demonstrating the platform’s
effectiveness in accurately classifying animal activities and identifying deviations
from normal behaviour patterns. The potential applications and implications of this
technology are discussed, highlighting its contribution to improving animal welfare
across various domains, from enhancing the bond between pets and owners to
revolutionizing animal healthcare in veterinary practice and the agriculture industry.
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INTRODUCTION

The market for canine activity monitoring devices has experienced rapid
growth in recent years, fuelled by pet owners increasing awareness of and
desire to improve their dogs’ health and well-being (Grand View Research,
2024). These devices have gained popularity for their ability to track basic
behaviours and physiological parameters, providing valuable insights into a
dog’s overall health.
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However, there is a growing need for systems that offer more precise
and detailed information about canine movement patterns. By leveraging
advanced sensor technology and analytical techniques, these systems could
enable the early detection of subtle behavioural changes, potentially aiding
in the diagnosis of diseases and optimization of injury recovery protocols
(Ladha et al., 2013). Emerging research has demonstrated the potential
of such devices to address a range of health issues in dogs, including
psychological disorders like separation anxiety (Wang et al., 2022) and
chronic conditions such as epilepsy (Muñana et al., 2020 and Folkard et al.,
2023).

Current canine activity monitors predominantly rely on 3-axis
accelerometers to capture movement data (Chambers et al., 2021 and
Uijl et al., 2017). Some devices incorporate additional sensors, such as
gyroscopes (Ferdinandy et al., 2020 and Hussain et al., 2022) and, less
commonly, magnetometers (Marcato et al., 2023). The combination of
these three sensors forms an Inertial Measurement Unit (IMU), providing a
reliable, lightweight, cost-effective, and energy-efficient solution for motion
tracking. While alternative approaches utilize camera-based systems (Tsai
et al., 2020 and Mealin et al., 2016) or even integrate sensor and camera
data (Kim et al., 2022), this study focuses specifically on IMU-based systems
for canine behavioural monitoring.

To contribute to this evolving field, we present a low-cost wireless wearable
device constructed from commercially available hardware. Designed with an
open-source framework, this device represents the first step in developing a
novel Internet of Things (IoT) platform aimed at empowering veterinarians
and pet owners to monitor daily routines, activity levels, and potential
anomalies in dogs. This platform promises to provide valuable insights
into canine behaviour, facilitating proactive health management and
strengthening the bond between humans and their canine companions.

SETTING UP THE IoT WEARABLE DEVICE

On this Section, we summarize the assembling of the IoT device used to
collect behavioural data during the experiment.

The IoT wearable device is a custom 3D-printed support and protective
case that houses the microcontroller and its sensors. The custom 3D-printed
support and protective case was designed to ensure secure and stable
placement of the M5StickC Plus device. This support was then securely
attached to a commercially available dog collar, allowing for comfortable and
consistent positioning of the sensors around the dog’s neck. This minimized
sensor movement during the experiment, leading to the collection of reliable
inertial data.

The M5StickC Plus device from M5 Stack, a commercially available
platform for IoT development, was employed to collected inertial data. These
devices contain a three-axis accelerometer with a sensitivity range of –16g to
16g and a three-axis gyroscope with a range of –2000 to 2000 degrees per
second (DPS). This allowed for the capture of both linear acceleration and
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angular velocity, providing comprehensive information about the animal’s
movement and positioning.

The collected data was transmitted wirelessly to a remote database via
Wi-Fi. This facilitated continuous data logging and allowed for real-time
monitoring of the dog’s activity. The use of a remote database also enabled
efficient data storage and management, facilitating subsequent analysis.

To promote transparency and reproducibility, both the software developed
for this study and the hardware schematics have been made publicly available
as open-source resources. This allows other researchers and developers to
utilize and build upon our work, fostering collaboration and accelerating
advancements in the field of animal activity monitoring.

DATA COLLECTION

On this Section, we summarize the data collection procedure employed in
the experiment. The correct positioning of the collar on the dog was verified
before, during and after each session, to ensure consistent placement for
reliable data capture and minimize variability due to sensor orientation.

Data Collection Procedure

The data collection process was structured into a series of distinct
experimental trials to facilitate data synchronization and labelling. Each trial
adhered to the following workflow:

• Initiate video recording of the dog’s activity;
• Perform the synchronization procedure;
• Capture specific behaviour;
• Conclude video recording of the dog’s activity.

To ensure manageable video lengths and optimize labelling accuracy, each
recording was kept under 120 seconds. Each trial focused on eliciting a
specific set of behaviours to maintain control and facilitate the annotation
process.

The synchronization procedure aimed to establish a temporal alignment
between the video recording and the inertial sensor data. With the video
recording initiated and the device held steady, the researcher focused their
attention on a precision clock to capture the displayed time. This temporal
reference point, clearly visible in the video frame, was crucial for subsequent
synchronization of the video and inertial sensor data. Following the capture
of the time, the researcher performed two distinct movements:

• Sharp Agitation: The device was abruptly shaken for approximately 1–2
seconds;

• Sudden Stop: The agitation was stopped abruptly, and the device was held
motionless for 1–2 seconds.

After completing these movements, the recording continued without
interruption, capturing the planned behaviours for the trial.



Decoding Pet Signals: Bridging the Gap for Accurate Diagnoses 681

Behavioural Categories and Elicitation

The following predefined behavioural categories were used for annotation,
along with the corresponding elicitation techniques:

• Walking: No specific trial was dedicated to walking. This behaviour was
captured during other trials as the dog moved naturally between activities.
Walking was characterized by a slow, coordinated movement of the limbs,
with the legs moving in a specific sequence (left hind leg, left front leg, right
hind leg, right front leg), resulting in forward motion.

• Sitting: The dog was cued to sit between 2 and 4 times during the trial,
with each sitting instance lasting approximately 10 to 15 seconds. Sitting
was defined as the dog having all four extremities and rump in contact
with the ground, exhibiting minimal to no movement.

• Jumping: The dog was encouraged to perform between 4 and 5 jumps
during the trial. Jumping was characterized by the dog propelling itself
upward, with all four paws leaving the ground, and landing on a
higher surface. This behaviour was often elicited in conjunction with
“Descending from an Object.”

• Descending from an Object: The dog was guided to descend from an
object, such as a sofa, between 4 and 5 times during the trial. This
behaviour was typically paired with the “Jumping” task.

• Laying Down: The dog was cued to lay down between 3 and 4 times
during the trial, maintaining the position for 15 to 20 seconds each time.
Laying down was defined as the dog’s torso being in contact with the
ground, with hips and shoulders at the same level. Variations, such as
laying on the side or back with legs in the air, were also included in this
category.

• Running: The dog was encouraged to run for approximately 10 seconds,
between 2 and 3 times during the trial. Running was characterized
by a coordinated and rapid movement of all four limbs, with all four
paws simultaneously leaving the ground at some point during the stride.
Galloping, a specific type of running gait, was typically observed during
playful activities.

• Standing: No dedicated trial was conducted for standing. This behaviour
was recorded during other trials when the dog was stationary. Standing
was defined as the dog having all four extremities on the ground, without
the torso touching the ground, and exhibiting minimal to no movement.

Experimental Trials

Based on these behavioural categories, three distinct experimental trials were
conducted, each recorded in a separate video and following the workflow:

• Sitting Trial: Focused on eliciting and capturing instances of sitting
behaviour

• Jumping and Descending Trial: Focused on capturing jumping and
descending behaviours.

• Laying Down Trial: Focused on eliciting and capturing instances of laying
down behaviour.
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The behaviours “Walking,” “Running,” and “Standing” were captured
opportunistically during these trials. When necessary, additional trials were
conducted to specifically elicit these behaviours.

Behaviour Annotation

During offline data analysis, video recordings were meticulously
synchronized with the inertial data streams, adhering to the established
protocol. This synchronization ensured accurate alignment between the
observed behaviours and the corresponding sensor readings. Each video
frame was then carefully annotated with predefined labels representing
distinct motion patterns in the dog’s behaviour, such as walking, trotting,
running, playing, and resting. This frame-by-frame annotation process was
facilitated by Label Studio, a commercially available software commonly
used for subtitle editing, which proved to be an effective tool for this task.

To maintain objectivity and ensure the integrity of the dataset, only
video segments where the dog’s activity could be clearly and unambiguously
identified were labelled. This resulted in a dataset with interrupted
labels, as periods of ambiguous or transitional movements were excluded.
Additionally, any observed body postures that did not align with the
predefined activity categories were also excluded from the analysis.

Following the video annotation, the raw IMU data, initially sampled at
a higher frequency, was down sampled to 30Hz to match the frame rate
of the video recordings. This down sampling process involved grouping
consecutive sensor readings and calculating the average value for each group,
effectively reducing the data resolution while preserving the overall motion
trends. Once the IMU data was synchronized with the video frame rate, it
was merged with the labelled dataset. This resulted in a comprehensive and
cohesive annotated dataset containing both the raw inertial measurements
and their corresponding activity labels, ready for subsequent analysis and
model training.

DATA ANALYSIS

All classification models were developed using Python (v3.12.3), with
the scikit-learn library (v1.5.2) being used to implement machine learning
techniques. Two algorithms were selected for analysis: Random Forest (RF),
k-Nearest Neighbours (KNN).

A grid search algorithmwas employed to explore all possible combinations
of the Random Forest classifier’s two hyperparameters: maximum depth
(with values of 5, 10, and 15) and the number of estimators (set to 100, 250,
and 500). For the KNNmodel, various weights and metrics were tested, with
the value of k fixed according to the number of distinct behaviours present
in the dataset, utilizing 5-fold cross-validation for model evaluation.

The evaluation was performed using an intra-subject approach, where
training and testing were conducted on the same individual. This was done
because the primary focus was not on evaluating the model’s generalization.
We report average accuracy and F1-score, as these metrics provide a
comprehensive evaluation of the model’s ability to correctly predict the
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class in multi-class classification problems with a natural class imbalance.
To assess themodel performance, we employed three different sets of features:
accelerometer data alone, gyroscope data alone, and a combination of both.
The results are shown in Table 1 and 2.

Table 1. Average classification results for Random Forest.

Random Forest Accelerometer Gyroscope Accelerometer and Gyroscope

Accuracy 66.8 61 85.3
F1-Score 56 48 82

Table 2. Average classification results for KNN.

KNN Accelerometer Gyroscope Accelerometer and Gyroscope

Accuracy 65.4 59.5 62.5
F1-Score 57 52 55

Figure 1: Confusion matrix.

Figures 1 and 2 show the confusionmatrix alongside the distribution graph
of behaviours, to allow for the evaluation of the error for each behaviour.
The model exhibited a clear bias towards predicting “standing,” significantly
exceeding its true prevalence in the dataset. This over-representation is
likely attributable to the inherent imbalance in the data, where “standing”
constitutes the most frequent class. Preliminary attempts to address this
imbalance using basic oversampling techniques proved unsuccessful, leading
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to a marked decline in the model’s overall performance. This underscores
the need for more sophisticated strategies to either balance the dataset
or to implement a more controlled and balanced data collection protocol.
However, achieving balanced data collection in this context presents unique
challenges due to the non-collaborative nature of the canine subjects. This
issue will be a primary focus of future research endeavours.

Figure 2: Distribution graph of behaviours.

The model frequently exhibits inconsistencies in its predictions within a
single behavioural sequence. For instance, it might accurately classify ten
consecutive frames as “standing” before misclassifying a single frame as
“eating,” only to revert to correctly classifying the subsequent twenty frames
as “standing.” Such abrupt transitions are highly implausible, as canine
behaviour typically unfolds gradually and continuously. While behaviours
naturally have a start and end point, these transitions occur over a period,
not in discrete, instantaneous shifts.

This limitation stems from the model’s treatment of individual frames as
isolated instances, neglecting the inherent temporal continuity of behaviour.
By disregarding the sequential nature of actions and their varying durations,
the model generates predictions that lack realism and fail to capture the
nuances of natural movement. While treating the data as windows, rather
than individual frames, could potentially improve the model’s performance,
this approach necessitates careful consideration of the train-test split to avoid
data leakage. Improper splitting could inadvertently introduce information
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from the test set into the training process, leading to artificially inflated
performance metrics.

To mitigate this issue, several strategies could be explored. One potential
solution involves incorporating the model’s previous prediction as a feature,
allowing it to leverage temporal context and better capture transitions
between behaviours. Alternatively, a more fundamental shift in approach
could involve designing a model that classifies behavioural sequences or
regions, rather than individual instances. Such a model would explicitly
define the start and end points of each behaviour, providing a more realistic
and temporally consistent representation of how a dog’s actions evolve over
time. This would ultimately lead to more accurate predictions that reflect the
natural flow and progression of canine behaviour.

CONCLUSION

This study aimed to validate the feasibility of collecting and utilizing inertial
data from dogs using a low-cost, open-source, and easily deployable device.
While the activity classification model achieved satisfactory performance,
the primary focus was not to develop a state-of-the-art classifier but to
demonstrate the potential of this approach for gathering rich and informative
data on canine behaviour. The successful implementation of this system paves
the way for future research and development in the field of canine activity
monitoring.

Future work will focus on several key areas to enhance the platform’s
capabilities and generalizability. This includes expanding the dataset with
more dogs and a wider range of breeds to improve the model’s robustness
and address potential breed-specific variations in movement patterns.
Furthermore, exploring semi-supervised learning techniques could mitigate
the challenges of manual labelling and potentially lead to the development of
a standardized dataset for canine activity recognition. In addition to refining
the classification model, future efforts will involve incorporating additional
sensors, such as microphones, to capture a broader spectrum of behavioural
cues. Finally, the development of an intuitive and informative dashboard
will be crucial for translating the collected data into actionable insights for
veterinarians and pet owners alike.
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