
Human Interaction and Emerging Technologies (IHIET-AI 2025), Vol. 161, 2025, 277–283

https://doi.org/10.54941/ahfe1005919

Enhancing Android Security Through
Artificial Intelligence: A
Hyperparameter-Tuned Deep Learning
Approach for Robust Software
Vulnerability Detection
Mohammed Assiri

Department of Computer Science, College of Computer Engineering and Sciences,
Prince Sattam Bin Abdulaziz University, P.O. BOX 16273, Al-Kharj, ZIP 3963,
Saudi Arabia

ABSTRACT

Detecting software vulnerabilities is essential for cybersecurity, particularly in Android
systems, which are widely used and vulnerable due to their open-source nature.
Conventional signature-based malware detection methods are inadequate against
sophisticated and evolving threats. This paper introduces a Hyperparameter-Tuned
Deep Learning Approach for Robust Software Vulnerability Detection (HPTDLA-
RSVD) aimed at enhancing Android security through an optimized deep learning
model. The HPTDLA-RSVD methodology encompasses min-max data normalization,
feature selection using the Ant Lion Optimizer (ALO), classification via a Deep Belief
Network (DBN), and hyperparameter optimization with the Slime Mould Algorithm
(SMA). Experimental evaluations on a benchmark dataset reveal that HPTDLA-RSVD
surpasses existing techniques across multiple performance metrics, confirming its
efficacy in identifying and mitigating software vulnerabilities on Android platforms.

Keywords: Artificial intelligence, Software vulnerability, Cybersecurity, Deep learning, Ant lion
optimizer, Hyperparameter tuning

INTRODUCTION

Software vulnerabilities are weaknesses in software systems that malicious
actors can exploit to compromise security, steal data, or inflict damage
on systems and users (Yadav, 2022). These vulnerabilities may arise from
coding errors, design flaws, or configuration issues and can sometimes
facilitate attacks on other networks, amplifying the initial compromise
(Ullah, 2023). Android, as a widely adopted open-source mobile operating
system, offers significant customization and openness. While these features
promote extensive application development, they also render Android a
primary target for cyberattacks due to inherent security vulnerabilities in
the operating system and application development processes (Almomani,
2022). Malicious applications can exploit system calls to access hardware
resources and interface between the kernel and applications, often concealing

© 2025. Published by AHFE Open Access. All rights reserved. 277

https://doi.org/10.54941/ahfe1005919

278 Assiri

their activities through encoded techniques that are difficult to detect using
standard static analysis methods (Haq, 2021).

The permissive nature of Android allows users to install unofficial
third-party applications, extending its reach beyond official marketplaces
(Chopra, 2023). The Android permission mechanism requires users to grant
permissions manually, which malicious apps can exploit to gain unauthorized
access and control without user consent (Kim, 2022). Such malware can
cause data theft, file corruption, unwanted advertisements, and even device
lockdowns demanding ransom payments (Raymond, 2023).

Traditional signature-based malware detection methods, reliant on
databases of known malware characteristics, are inadequate against the
proliferation of new malware variants (Yadav, 2022). Advanced techniques
utilizing machine learning (ML) and deep learning (DL) have become
essential for detecting unknown Android malware embedded in APK files.
These approaches extract features such as permissions and API calls from
known benign and malicious applications and employ ML algorithms like
Random Forest (RF) and Decision Trees (DT) to develop models capable of
identifying malicious applications with high accuracy (Al-Andoli, 2023).

This study proposes a Hyperparameter-Tuned Deep Learning Approach
for Robust Software Vulnerability Detection (HPTDLA-RSVD) to enhance
Android malware security using an optimized deep learning model. The
HPTDLA-RSVD technique includes data normalization, feature selection via
the Ant Lion Optimizer (ALO), classification using a Deep Belief Network
(DBN), and hyperparameter tuning through the Slime Mould Algorithm
(SMA). Experimental evaluation on a benchmark dataset demonstrates
that the HPTDLA-RSVD method surpasses existing approaches in various
performance metrics.

Literature Survey

Several studies have explored deep learning models for Android malware
detection, leveraging both static and dynamic analysis techniques. Nasser
et al. (2023) developed DL-AMDet, which detects Android malware
using dynamic and static features. DL-AMDet comprises two detection
architectures: one employing a CNN-BiLSTM model for static analysis and
another using a Denoising Autoencoder (DAE) for dynamic analysis. Karbab
and Debbabi (2021) introduced PetaDroid, an architecture for accurate
Android malware detection and clustering similar malware variants via
static analysis. PetaDroid adapts to changes over time and resists binary
obfuscation techniques, utilizing methods from natural language processing
(NLP) and machine learning. Amer and El-Sappagh (2022) proposed a
behavioral Android malware smell predictor system, representing features
in API call sequences using clustering techniques. The framework employs
an LSTM network for classifying API and system call snapshots and an
ensemble machine learning algorithm for classifying Android permissions.
Shaukat et al. (2023) presented a deep learning-based approach analyzing
portable executable (PE) files as images, integrating deep learning with
machine learning to detect malware without extensive feature engineering.

Enhancing Android Security Through Artificial Intelligence 279

Geremias et al. (2022) developed a multi-view Android malware detection
approach using image-based deep learning. The method assesses applications
based on multiple feature sets, transforms extracted features into images,
and applies deep learning techniques. Albakri et al. (2023) proposed a
Rock Hyrax Swarm Optimizer with a deep learning-based Android malware
detection technique (RHSODL-AMD), involving API calls and essential
permissions identification, feature selection, and an attention recurrent
autoencoder (ARAE) model for malware detection. Ravi et al. (2022)
introduced a multi-view attention-based deep learning method analyzing
features like API calls and PE-Imports for malware detection. Evaluations
demonstrated the approach’s effectiveness.

Raphael and Mathiyalagan (Raphael, 17) implemented an intelligent
hyperparameter-tuned deep learning-based malware detection model (IHPT-
DLMD), involving feature selection using a binary coyote optimization
algorithm, a bidirectional LSTM model, and hyperparameter tuning with
the glowworm swarm optimization algorithm. These studies highlight the
potential of deep learning models in enhancing Android malware detection
accuracy, though challenges remain in optimizing these models for improved
performance and computational efficiency.

The Proposed Method

We propose the Hyperparameter-Tuned Deep Learning Approach for Robust
Software Vulnerability Detection (HPTDLA-RSVD) to enhance Android
malware security through an optimized deep learning model. The HPTDLA-
RSVD technique consists of Data Normalization using Min-Max Scaling,
Feature Selection using the Ant Lion Optimizer (ALO), Classification using
a Deep Belief Network (DBN), and Hyperparameter Tuning using the Slime
Mould Algorithm (SMA)

Data Normalization

Data normalization scales feature values to a uniform range, reducing the
impact of differing magnitudes among features. The min-max normalization
method scales input data into the range [0, 1], enhancing feature input
uniformity and aiding the learning algorithm’s resilience to outliers and data
variations (Li, 2020).

Feature Selection Using Ant Lion Optimizer (ALO)

Feature selection reduces dimensionality, improves model performance, and
minimizes computational cost. The HPTDLA-RSVD technique employs the
Ant Lion Optimizer (ALO) for feature selection (Risma, 2023), simulating
antlions’ hunting behavior, where ants represent potential feature subsets.
The ALO process involves:

• Initialization: Randomly generate ant (feature subset) and antlion
populations.

• Random Walk of Ants: Simulate ants’ random walk to explore the search
space.

280 Assiri

• Ants Trapped by Antlions: Antlions influence ants’ movement, guiding
them to promising regions.

• Updating Antlions: Update antlions based on the fitness of trapped ants.
• Fitness Function: Balances maximizing classification accuracy and

minimizing selected features:

Fitness = αγR(D) + β
|R|∣∣C∣∣

where γR(D) is the classification error rate, |R| is the selected feature subset
size, |C| is the total feature count, and α + β = 1

Classification Using Deep Belief Network (DBN)

A Deep Belief Network (DBN) is a generative model consisting of multiple
layers of hidden units with connections between layers (Yin, 2023). DBNs
effectively model complex, high-dimensional data, making them suitable for
malware detection.

The DBN in HPTDLA-RSVD is built by stacking Restricted Boltzmann
Machines (RBMs), trained in two phases:

• Unsupervised Pre-training: Each RBM is trained layer-wise to capture data
distribution.

• Supervised Fine-tuning: The entire network is fine-tuned using
backpropagation to minimize classification error.

The energy function of an RBM is:

E
(
v, h

)
= −

n∑
i = 1

m∑
j = 1

wijsisj −
n∑

i = 1

bivi −
m∑

j = 1

cihi

where v and h are visible and hidden units, wij are weights, and bi, cj are
biases.

Hyperparameter Tuning Using Slime Mould Algorithm (SMA)

Hyperparameter tuning optimizes deep learning models’ performance.
HPTDLA-RSVD utilizes the Slime Mould Algorithm (SMA) for
hyperparameter optimization (Rifat, 2023), inspired by slime moulds’
oscillatory foraging behavior.

In hyperparameter tuning, SMA adjusts parameters like learning rate and
hidden units to minimize classification error:

• Initialization: Randomly generate hyperparameter sets within bounds.
• Fitness Evaluation: Evaluate each set using the classification error rate.
• Update Mechanism: Update solutions based on best-found solutions and

a random walk simulating slime mould propagation.
• Termination: Repeat until convergence criteria are met, such as maximum

iterations or a satisfactory error rate.

Enhancing Android Security Through Artificial Intelligence 281

The fitness function for SMA is:

fitness (xi) = ClassifierErrorRate (xi)

=
Number of Misclassified Instances

Total Number of Instances
× 100

Experimental Evaluation

We evaluated theHPTDLA-RSVD technique using the AndroAutoPsy dataset
(AndroAutoPsy), comprising 7,500 instances as Benign: 5,000 instances,
and Malware: 2,500 instances. Features include API calls, permissions, and
system calls. Performance metrics used: Accuracy (Acc), Precision (Prec),
Recall (Rec), F1-Score (F1), and Matthews Correlation Coefficient (MCC).

Results and Discussion

The HPTDLA-RSVD technique was assessed under different epochs to
analyze performance over training iterations. At 1,000 epochs, it achieved
the highest performance:

Table 1. Performance metrics of HPTDLA-RSVD technique at 1,000 epochs.

Accuracy Precision Recall F1-Score MCC

99.04% 98.95% 99.04% 99.00% 97.99%

The confusion matrix at 1,000 epochs showed effective detection of both
benign and malicious samples. Precision-recall and ROC curves further
illustrated strong classification performance.

Comparative Analysis

We compared HPTDLA-RSVD with other algorithms, including J48,
Random Forest, Decision Table, Multilayer Perceptron, Logistic Model,
AdaBoostM1, and AAMD-OELAC (Alamro, 2023).

Table 2. Performance evaluation of HPTDLA-RSVD in comparison to other algorithms.

Algorithm Accuy Precn Recal Fscore

J48 96.92 95.33 97.55 97.37
RF 97.91 96.70 97.35 96.74
DT 94.72 91.69 97.64 97.88
Multilayer Perceptron 98.21 97.21 98.02 98.28
Logistic Model 96.39 94.50 97.86 96.67
AdaBoostM1 88.51 81.83 91.94 94.38
AAMD-OELAC 98.97 98.27 98.44 98.54
HPTDLA-RSVD 99.04 98.95 99.04 99.00

HPTDLA-RSVD outperformed all methods in accuracy, precision,
recall, and F1-score, demonstrating superior malware detection capability.
In computational efficiency, HPTDLA-RSVD also showed advantages,
requiring the least computational time.

282 Assiri

CONCLUSION

This study presented the Hyperparameter-Tuned Deep Learning Approach
for Robust Software Vulnerability Detection (HPTDLA-RSVD) to enhance
Android malware detection. The HPTDLA-RSVD technique integrates:

• Min-Max Data Normalization: Ensures input features are on a similar
scale.

• Feature Selection using Ant Lion Optimizer (ALO): Selects relevant
features, reducing dimensionality.

• Classification using Deep Belief Network (DBN): Employs a deep learning
model capturing complex patterns.

• Hyperparameter Tuning using Slime Mould Algorithm (SMA): Optimizes
hyperparameters for better accuracy.

Experimental evaluations demonstrated that HPTDLA-RSVD
outperforms existing methods in accuracy, precision, recall, F1-score,
and computational efficiency, effectively detecting and classifying Android
malware. Future work may involve extending HPTDLA-RSVD to other
malware types and exploring real-time detection scenarios.

REFERENCES
Al-Andoli, M.N., Sim, K. S., Tan, S. C., Goh, P. Y. and Lim, C. P., 2023. An ensemble-

based parallel deep learning classifier with PSO-BP optimization for malware
detection. IEEE Access.

Alamro, H., Mtouaa, W., Aljameel, S., Salama, A. S., Hamza, M. A. and Othman,
A. Y., 2023. Automated android malware detection using optimal ensemble
learning approach for cybersecurity. IEEE Access.

Albakri, A., Alhayan, F., Alturki, N., Ahamed, S. and Shamsudheen, S., 2023.
Metaheuristics with Deep Learning Model for Cybersecurity and Android
Malware Detection and Classification. Applied Sciences, 13(4), p. 2172.

Almomani, I., Alkhayer, A. and El-Shafai, W., 2022. An automated vision-based deep
learning model for efficient detection of Android malware attacks. IEEE Access,
10, pp. 2700–2720.

Amer, E. and El-Sappagh, S., 2022. Robust deep learning early alarm prediction
model based on the behavioural smell for android malware. Computers &
Security, 116, p. 102670.

AndroAutoPsy Dataset. OCS Lab. Retrieved from https://ocslab.hksecurity.net/andr
o-autopsy.

Chopra, R., Acharya, S., Rawat, U. and Bhatnagar, R., 2023. An energy efficient,
robust, sustainable, and low computational cost method for mobile malware
detection. Applied Computational Intelligence and Soft Computing, 2023.

Geremias, J., Viegas, E. K., Santin, A. O., Britto, A. and Horchulhack, P.,
2022. Towards multi-view android malware detection through image-based deep
learning. In 2022 International Wireless Communications andMobile Computing
(IWCMC) (pp. 572–577). IEEE.

Haq, I. U., Khan, T. A. and Akhunzada, A., 2021. A dynamic robust DL-based model
for android malware detection. IEEE Access, 9, pp. 74510–74521.

Karbab, E. B. and Debbabi, M., 2021. Petadroid: adaptive android malware
detection using deep learning. In Detection of Intrusions and Malware, and
Vulnerability Assessment: 18th International Conference, DIMVA 2021, Virtual
Event, July 14–16, 2021, Proceedings 18 (pp. 319–340). Springer International
Publishing.

https://ocslab.hksecurity.net/andro-autopsy.
https://ocslab.hksecurity.net/andro-autopsy.

Enhancing Android Security Through Artificial Intelligence 283

Kim, J., Ban, Y., Ko, E., Cho, H. and Yi, J. H., 2022. MAPAS: A practical
deep learning-based android malware detection system. International Journal of
Information Security, 21(4), pp. 725–738.

Li, H., Zhao, W., Zhang, Y. and Zio, E., 2020. Remaining useful life prediction
using multi-scale deep convolutional neural network. Applied Soft Computing,
89, p. 106113.

Nasser, A. R., Hasan, A. M. and Humaidi, A. J., 2023. DL-AMDet: Deep Learning-
Based Malware Detector for Android. Intelligent Systems with Applications,
p. 200318.

Raphael, R. and Mathiyalagan, P., 2023. Intelligent hyperparameter-tuned deep
learning-based android malware detection and classification model. Journal of
Circuits, Systems and Computers, p. 2350191.

Raymond, V. J., Raj, R. and Retna, J., 2023. Investigation of AndroidMalware Using
Deep Learning Approach. Intelligent Automation and Soft Computing, 35(2).

Ravi, V., Alazab, M., Selvaganapathy, S. and Chaganti, R., 2022. A multi-
view attention-based deep learning framework for malware detection in smart
healthcare systems. Computer Communications, 195, pp. 73–81.

Rifat, M. S. H., Niloy, M. A., Rizvi, M. F., Ahmed, A., Ahshan, R., Nengroo, S. H.
and Lee, S., 2023. Application of binary slime mould algorithm for solving unit
commitment problem. IEEE Access.

Risma, Y.M. and Utama, D.M., 2023. AVOA andALO algorithm for energy-efficient
no-idle permutation flow shop scheduling problem: A comparison study. Jurnal
Optimasi Sistem Industri, 22(2), pp. 126–141.

Shaukat, K., Luo, S. and Varadharajan, V., 2023. A novel deep learning-
based approach for malware detection. Engineering Applications of Artificial
Intelligence, 122, p. 106030.

Ullah, F., Ullah, S., Srivastava, G., Lin, J. C. W. and Zhao, Y., 2023. NMal-Droid:
Network-based android malware detection system using transfer learning and
CNN-BiGRU ensemble. Wireless Networks, pp. 1–22.

Yadav, P., Menon, N., Ravi, V., Vishvanathan, S. and Pham, T. D., 2022. A two-stage
deep learning framework for image-based android malware detection and variant
classification. Computational Intelligence, 38(5), pp. 1748–1771.

Yadav, P., Menon, N., Ravi, V., Vishvanathan, S. and Pham, T. D., 2022. EfficientNet
convolutional neural networks-based android malware detection. Computers &
Security, 115, p. 102622.

Yin, X., Huang, X., Pan, Y. and Liu, Q., 2023. Point and interval estimation of rock
mass boreability for tunnel boring machine using an improved attribute-weighted
deep belief network. Acta Geotechnica, 18(4), pp. 1769–1791.

	Enhancing Android Security Through Artificial Intelligence: A Hyperparameter-Tuned Deep Learning Approach for Robust Software Vulnerability Detection
	INTRODUCTION
	Literature Survey
	The Proposed Method
	Data Normalization
	Feature Selection Using Ant Lion Optimizer (ALO)
	Classification Using Deep Belief Network (DBN)
	Hyperparameter Tuning Using Slime Mould Algorithm (SMA)
	Experimental Evaluation
	Results and Discussion
	Comparative Analysis

	CONCLUSION

