
Human Interaction and Emerging Technologies (IHIET-AI 2025), Vol. 161, 2025, 290–300

https://doi.org/10.54941/ahfe1005921

Deploying a Transformer-Based Model in
Microservices Architecture: An Approach
for Real-Time Body Pose Classification
Enrique Bances1, Vedant Dalvi1, Urs Schneider1,2,
and Thomas Bauernhansl1,2

1Institute of Industrial Manufacturing and Management, University of Stuttgart,
Stuttgart 70569, Germany

2Institute for Manufacturing Engineering and Automation, Fraunhofer Society,
Stuttgart 70569, Germany

ABSTRACT

Real-time body pose classification is essential in preventing injuries caused by
repetitive strain or poor ergonomics. In industrial environments, ensuring worker
safety often requires monitoring the poses of multiple individuals performing
different tasks. However, analysing the movements of many workers simultaneously
presents computational challenges, potentially impacting accuracy and latency. In
this context, microservices architecture offers significant advantages for enabling
individual application functionalities to operate independently. Also, this architecture
allows systems to scale efficiently in response to specific workload demands by adding
CPU, memory, and storage resources, improving system performance and resource
efficiency. This study evaluates the scalability of a real-time body pose classification
system deployed using a microservices architecture, comparing it against a traditional
monolithic approach. The system used a transformer-based model designed to
monitor awkward body positions and identify constraints in joint movements. The
methodology involves offline training on sequential data representing body joint
angles, collected using an IMU sensor-based motion capture (MoCap) system. The
system streams joint angles wirelessly from participants performing logistic tasks,
such as lifting and carrying sandbags, in an industrial setting. Once trained, the
classification model is deployed in real-time, processing streaming data for live
body pose classification. Inference results from both architectures are stored in a
time-series database for performance analysis. Scalability tests were conducted by
deploying services for varying numbers of participants (one, three, five, and ten)
in parallel across both architectural setups. Data throughput, latency, and resource
utilisation (CPU and memory usage) were monitored during load testing. The results
show that the microservices architecture outperforms the monolithic architecture in
scalability. When scaled to accommodate multiple participants, it achieved higher
data throughput, reduced latency by 18-48%, and decreased CPU usage by 18-44%.
These findings validate the effectiveness of microservices architecture in enhancing
the performance and scalability of real-time body pose classification systems.

Keywords: Microservices, Transformer model, Body pose classification, Scalability, Sequential
data

© 2025. Published by AHFE Open Access. All rights reserved. 290

https://doi.org/10.54941/ahfe1005921


Deploying a Transformer-Based Model in Microservices Architecture 291

INTRODUCTION

Body pose classification (BPC) using inertial measurement unit (IMU) sensors
is frequently used in industrial applications (Caputo et al., 2019), offering
significant advantages for safety and ergonomics assessments (Salisu, 2023).
These sensors are portable, cost-effective, and scalable, making them ideal
for large-scale deployments requiring flexibility and quick setup (Ciklacandir
and Isler, 2022).

Deep learning (DL) techniques using IMU sensor data have gained
popularity in BPC. For instance, long short-term memory (LSTM) method
is particularly designed to process sequential data and conduct time series
analysis. LSTMs effectively capture and retain patterns of body movements
over time, enabling accurate predictions of future states (Arras et al.,
2019). LSTM applications span diverse fields, including sports science,
where they enhance performance analysis (Kranzinger et al., 2023), and
rehabilitation, where they support safety and ergonomics (Sherratt and
Iravini, 2021). LSTMs are also integral to industries such as human-robot
interaction (Jaramillo et al., 2022) and gesture recognition, enabling systems
to understand and respond to human movements precisely (Kavarthapu,
2017).

Transformer models widely used in tasks such as natural language
processing, machine translation, and computer vision (Zhan et al., 2023),
are gaining attention in BPC due to their ability to handle long sequences,
capture contextual relationships, and improve computational efficiency
(Vaswani, 2017). Unlike LSTMs, which are designed for sequential data
processing, transformer models utilise a self-attention mechanism to assess
the importance of input data in parallel, resulting in faster training and
inference times for long sequences (Vaswani, 2017). However, transformers
require larger datasets and higher computational resources to perform
optimally (Wen et al., 2022).

Integrating transformer models with microservices architecture (MSA)
enhances their parallel processing capabilities. MSA enables distributed
deployment of model components as independent services, improving
scalability, maintainability, and the ability to handle multiple data streams
simultaneously (Li et al., 2021). This reduces inference time and supports
real-time communication via frameworks like stream processing tools and
message brokers, facilitating the development of complex, high-performance
applications (Desai et al., 2020).

Finally, this paper leveragesMSA to deploy transformer models, presenting
a real-time BPC system’s implementation, latency performance and scalability
evaluation. The selected event-driven architecture supports integrating
multiple external systems with diverse data sources, enabling concurrent,
instantaneous processing of event streams (Bances et al., 2024).

DEVELOPING REAL-TIME BODY POSE CLASSIFICATION USING
TRANSFORMER MODEL

The system implementation for BPC was structured into four phases. The
motion capture (Mocap) suit was calibrated and prepare for use in the first



292 Bances et al.

phase. During the second phase, data on body joint angles was collected from
test subjects performing a specific logistic task such as lifting and carrying
sandbags. The data was cleaned and processed to train a deep-learning model
for BPC. In the third phase, a data streaming pipeline was set up from the
Mocap suit using the IoT messaging protocol MQTT. The trained model
was then deployed within microservices and monolithic architecture-based
applications. Finally, in the fourth phase, experiments were conducted to
compare and validate the various advantages of the microservices over the
monolithic architecture.

Data Source

For this project, we used the Rokoko Smartsuit Pro II, equipped with IMU
sensors placed throughout the body, including the neck, shoulders, scapulae,
thorax, elbows, pelvis, wrists, hips, knees, and ankles. Data was collected
via Rokoko Studio Legacy software after calibrating the suit. The recordings
captured position, velocity, acceleration, and orientation metrics at various
frame rates. The software enabled data editing and export in formats like
FBX, BVH, CSV, and C3D. We exported the CSV data for model training
and FBX data for analysing the test subjects’ actions as animations.

Dataset Preparation and Model Training

The logistic task selected for data collection involved five test participants
performing actions such as lifting, carrying, and placing a heavy object.
We set up a test scenario with a storage bin filled with 8 kg sandbags
positioned 170 cm from a table. The task was categorised into five sub-classes
or postures: standing, lifting, carrying, placing, and unnatural/awkward
positions (see Figure 1).

Figure 1: The selected classes or postures of the logistic task were used to train the
model.

Collecting data from test subjects with varying body types and age groups
was essential to ensure that the deep learning model generalises well to
unseen data. Additionally, data collected from the same participant can differ
because the positions of the sensors on the motion capture suit may not be
consistent each time the subject performs the task or wears the suit again.
The data from the motion capture suit was recorded at 60 FPS.

To collect data, each test subject performed the logistic task ten times,
with slight variations in execution speed and body joint movements.



Deploying a Transformer-Based Model in Microservices Architecture 293

This approach was designed to build a robust dataset that enhances model
generalisation capabilities. Additionally, data was collected class-wise to
minimise overlap between postures.

Data from 50 task repetitions were collected and split into a 40:10 ratio
for training and testing the deep learning models. Out of 47,409 data points,
37,827 were used for model training, while 9,582 were reserved for testing.
The dataset is nearly balanced, though the standing class hasmore data points
than the other classes (see Figure 2a).

Figure 2: a) Class distribution of the collected data. b) Among the 51 potential features
representing body joint activity levels across five users, kernel density estimation
(KDE) identified seven as the most active during the logistic task. These features were
selected for further analysis.



294 Bances et al.

The suit captures 51 body movement features, including neck flexion,
pelvis extension, and ankle dorsiflexion. To identify the most relevant
movements, we analysed the distribution of each feature across all users
using kernel density estimation (KDE) plots (Weglarczyk, 2018). These
plots provide a clear visualisation of the probability density for continuous
variables, enabling us to assess the range of motion for each body joint and
observe joint behaviour during the selected task. Furthermore, the KDE plots
reveal patterns and similarities in joint movements across the five users. After
thoroughly examining the KDE plots for all 51 features, we selected seven
fundamental movements that were the most active during logistic tasks: neck
flexion, left and right elbow flexion, thorax extension, thorax lateral flexion
rotation, and left and right knee flexion (see Figure 2b). The collected data
for the seven features is then pre-processed through a series of steps, including
checking for non-numeric and missing values, labelling, scaling, sequencing,
and stacking. This process results in creating a 3D input tensor (see Figure 3),
which is then split into training and test sets for the transformer model.

Figure 3: Following the scaling of the dataset, the next step in the data processing
pipeline involved creating sequences from the scaled features and stacking these
sequences. This transformation was necessary because deep learning models require
input in the form of a 3-dimensional tensor, while the dataset is currently structured
as a 2-dimensional array defined by the number of samples and features.

Transformer Model Training

The transformer architecture employs an encoder-decoder structure
enhanced by a self-attention mechanism (Vaswani, 2017). Unlike other
deep learning models, such as LSTMs, which process data sequentially,
transformers utilise self-attention to process data in parallel. Transformers
handle data in parallel using a mechanism know as self-attention. This
mechanism allows the model to weigh the importance of each part of the
input sequence independently, making it highly efficient and capable of
capturing long-range dependencies. The implemented architecture consists
of an encoder and a decoder, each comprising multiple layers. For sequential
data classification tasks, only the encoder block is used to capture input
sequences’ underlying characteristics and contextual dependencies. The
encoder transforms the input sequence or input tensor into a continuous
representation. Positional encoding is added to the input embeddings to
retain the order of the sequence, and multi-head attention allows the model



Deploying a Transformer-Based Model in Microservices Architecture 295

to focus on different parts of the input simultaneously. Figure 4 shows a
representation of the implemented model.

Figure 4: The architecture of the transformer model, illustrating the encoder block with
multi-head self-attention mechanism, feed-forward layers, and the final output layer
used for classification.

Table 1 shows the hyperparameters found for the best classification
accuracy of the model. These parameters are set before the learning process
begins, significantly influencing the training and performance of models.

Table 1. Hyperparameter used for the
transformer model.

Hyperparameters Value

Heads 1
Head size 16
Batch size 32
Learning rate 1e-4
Dropout 0.1
Optimiser Adam
Activation function SoftMax
Loss function CE
Sequence size/ timesteps 60
Epochs 200

Training Results

The loss function is the Categorical Cross Entropy (CE) loss, also called
Softmax loss, defined in Eq. 1. This loss function is a combination of
a Softmax activation function and a cross-entropy loss, which is used in
neural networks for multi-class classification. By minimising loss, the model
learns to assign greater probabilities to accurate classes while decreasing
probabilities for wrong classes, thereby improving classification accuracy.
Figure 5a shows the training loss curve, showing that the training and
validation losses decrease exponentially up to a point and converge after



296 Bances et al.

this point. There is no significant gap between the training and validation
loss, called a generalisation gap. No gap between training and validation loss
indicates a good model fit to the training data and good generalization with
unseen data.

CE = −
i=N∑
i=1

y_truei · log (y_predi) (1)

where y_pred is the predicted class and y_true is the actual class of an N-class
classification problem.

Furthermore, a confusion matrix was used to evaluate the classification
model’s performance. In the confusion matrix of the trained classifier, it
can be observed that the model is classifying all five classes of the logistic
task, which indicates that there is no bias in the trained model for any class
of the classification problem (see Figure 5b). The results of the offline (not
real-time) model training are summarized in Table 2. Despite the availability
of limited data, the transformer model successfully learned the underlying
characteristics of the input sequences of body joint angles and predicted the
body poses with excellent accuracy. The trained model’s weights were stored
in HDF5 format and will be deployed later for real-time inference.

Figure 5: (a) The training loss curve shows the progression of loss reduction over
epochs during the training of the transformer model. The curve indicates how the
model’s performance improved as it learned from the data, with a decrease in loss over
time reflecting effective optimisation. (b) The confusion matrix displays the model’s
classification performance across different classes. Each cell represents the number
of predictions made for a specific class, with the diagonal cells indicating correct
classifications and off-diagonal cells representing misclassifications.

Table 2. Model training results.

Model Model Parameters Model Size (kB) Test Accuracy (%)

Transformer 1019 3.98 94.11



Deploying a Transformer-Based Model in Microservices Architecture 297

Deployment of Real-Time Data Streaming and Inference Pipeline in
Microservices

This phase consists of the data streaming and real-time inference pipelines.
Body joint angles are continuously streamed from the motion capture system
in the data streaming pipeline. A script application processes these angles
and publishes them to an MQTT topic. Following this, two microservices
are deployed on the server to handle real-time data processing and inference.

Microservices ensure flexibility and scalability, enabling the application
to efficiently handle multiple models simultaneously. The process remains
simple, as loading the respective model files in HDF5 format requires no
additional coding, allowing for easy duplication of the same code across
multiple models. The resulting performance metrics and inference outcomes
are stored in separate databases, facilitating further comparative analysis and
visualisation.

System Evaluation, Latency, and Scalability Test

An experimental evaluation was conducted to assess the system’s latency
and scalability. An emulator streams the collected training data to simulate
simultaneous data streams for multiple users, addressing the limitation of
having only two motion capture suits. To create data for new users, the
original training dataset was augmented by adding Gaussian noise of varying
intensities and scaling the data with different factors. The transformer
model was deployed in monolithic and microservices architectures and tested
simultaneously with data from one, three, five, and ten participants.

Request latency was measured as the time elapsed from receiving the
streamed raw data to the end of the model’s inference. Results, indicate
that the microservices architecture achieved 18–48% lower latency across
all experiments. Figure 6 illustrates a drastic increase in latency for the
monolithic-based application, while latency remained stable and changed
gradually with the microservices approach. These results further highlight
the latency advantages offered by microservices.

Figure 6: The latency results show the time the model takes to process and generate
inferences from the streamed data. These results are measured in milliseconds and
highlight the system’s efficiency in real-time processing. Lower latency indicates faster
response times, ensuring the model can perform real-time predictions with minimal
delay.



298 Bances et al.

Scalability evaluation measures the system’s ability to handle increased
data processing workloads without significant performance degradation.
CPU usage was the metric to evaluate scalability in both architectures.
The results show an 18–44% reduction in CPU consumption with the
microservices architecture, highlighting its superior scalability and efficiency
in managing higher workloads compared to the monolithic approach (see
Figure 7).

Figure 7: The scalability results demonstrate the system’s ability to handle increasing
inferences services per participant and data streams without significant performance
degradation. In all cases, the CPU usage in the microservices is reduced.

CONCLUSION

This paper presents the implementation of a real-time body pose classification
system based on a transformer model. The model was deployed in monolithic
and microservices architectures and tested with data from one, three,
five, and ten participants. An experimental evaluation was conducted to
assess the system’s latency and scalability. The results showed a latency
reduction of 18–48% and an 18–44% decrease in CPU usage with
the microservices architecture. These findings highlight the microservices
approach’s advantages in latency, scalability, and efficiency in managing
higher workloads compared to the monolithic architecture.

This study also showcases the versatility and advantages of the transformer
architecture. The architecture has parallelization, the ability to learn long-
term dependencies and high scalability. This paper also shows that the
transformer architecture can learn from a limited amount of quality and
correctly processed data. However, the transformer model is computationally
expensive to train on a larger dataset.

ACKNOWLEDGMENT

Supported by the Deutsche Forschungsgemeinschaft (DFG,German Research
Foundation) under Germany’s Excellence Strategy – EXC 2120/1 –
390831618.



Deploying a Transformer-Based Model in Microservices Architecture 299

REFERENCES
Arras, L., Arjona-Medina, J., Widrich, M., Montavon, G., Gillhofer, M., Müller, K.

R.,... & Samek, W. (2019). Explaining and interpreting LSTMs. Explainable ai:
Interpreting, explaining and visualizing deep learning, 211–238.

Bances, E., Schneider, U., Bauernhansl, T., & Siegert, J. (2024). Enhancing
Ergonomics in Construction Industry Environments: A Digital Solution With
Scalable Event-Driven Architecture.Human Factors and Systems Interaction, 103.

Caputo, F., Greco, A., D ‘Amato, E., Notaro, I., & Spada, S. (2019). Imu-
based motion capture wearable system for ergonomic assessment in industrial
environment. In Advances in Human Factors in Wearable Technologies and Game
Design: Proceedings of the AHFE 2018 International Conferences on Human
Factors and Wearable Technologies, and Human Factors in Game Design and
Virtual Environments, Held on July 21–25, 2018, in Loews Sapphire Falls
Resort at Universal Studios, Orlando, Florida, USA 9 (pp. 215–225). Springer
International Publishing.

Ciklacandir, S., Ozkan, S., & Isler, Y. (2022, September). A comparison of
the performances of video-based and imu sensor-based motion capture systems
on joint angles. In 2022 Innovations in Intelligent Systems and Applications
Conference (ASYU) (pp. 1–5). IEEE.

Desai, V., Koladia, Y., & Pansambal, S. (2020). Microservices: Architecture and
technologies. Int. J. Res. Appl. Sci. Eng. Technol, 8(10), 679–686.

Fernandes, C., Matos, L. M., Folgado, D., Nunes, M. L., Pereira, J. R., Pilastri, A., &
Cortez, P. (2022). A deep learning approach to prevent problematic movements
of industrial workers based on inertial sensors. In 2022 International Joint
Conference on Neural Networks (IJCNN) (pp. 01–08). IEEE.

Jaramillo, I. E., Jeong, J. G., Lopez, P. R., Lee, C. H., Kang, D. Y., Ha, T. J.,... &
Kim, T. S. (2022). Real-time human activity recognition with IMU and encoder
sensors in wearable exoskeleton robot via deep learning networks.Sensors,22(24),
9690.

Kavarthapu, D. C., & Mitra, K. (2017). Hand gesture sequence recognition using
inertial motion units (IMUs). In 2017 4th IAPR Asian Conference on Pattern
Recognition (ACPR) (pp. 953–957). IEEE.

Kranzinger, C., Bernhart, S., Kremser, W., Venek, V., Rieser, H., Mayr, S., &
Kranzinger, S. (2023). Classification of Human Motion Data Based on Inertial
Measurement Units in Sports: A Scoping Review. Applied Sciences, 13(15), 8684.

Menolotto, M., Komaris, D. S., Tedesco, S., O’Flynn, B., & Walsh, M.
(2020). Motion capture technology in industrial applications: A systematic
review. Sensors, 20(19), 5687.

Lee, S., Koo, B., Yang, S., Kim, J., Nam, Y., & Kim, Y. (2022). Fall-from-height
detection using deep learning based on IMU sensor data for accident prevention
at construction sites. Sensors, 22(16), 6107.

Li, J., Liu, X.,Wang, Z., Zhao,H., Zhang, T., Qiu, S.,...&Cangelosi, A. (2021). Real-
time human motion capture based on wearable inertial sensor networks. IEEE
Internet of Things Journal, 9(11), 8953–8966.

Li, S., Zhang, H., Jia, Z., Zhong, C., Zhang, C., Shan, Z.,... & Babar, M. A. (2021).
Understanding and addressing quality attributes of microservices architecture: A
Systematic literature review. Information and software technology, 131, 106449.

Salisu, S., Ruhaiyem, N. I. R., Eisa, T. A. E., Nasser, M., Saeed, F., & Younis, H.
A. (2023). Motion Capture Technologies for Ergonomics: A Systematic Literature
Review.Diagnostics, 13(15), 2593.



300 Bances et al.

Sherratt, F., Plummer, A., & Iravani, P. (2021). Understanding LSTM network
behaviour of IMU-based locomotion mode recognition for applications in
prostheses and wearables. Sensors, 21(4), 1264.

Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J., & Sun, L. (2022).
Transformers in time series: A survey. arXiv preprint arXiv:2202.07125.

Weglarczyk, S. (2018). Kernel density estimation and its application. In ITM web of
conferences (Vol. 23, p. 00037). EDP Sciences.

Zhang, S., Fan, R., Liu, Y., Chen, S., Liu, Q., & Zeng, W. (2023). Applications of
transformer-based language models in bioinformatics: A survey. Bioinformatics
Advances, 3(1), vbad001.


	Deploying a Transformer-Based Model in Microservices Architecture: An Approach for Real-Time Body Pose Classification
	INTRODUCTION
	DEVELOPING REAL-TIME BODY POSE CLASSIFICATION USING TRANSFORMER MODEL
	Data Source
	Dataset Preparation and Model Training
	Transformer Model Training
	Training Results
	Deployment of Real-Time Data Streaming and Inference Pipeline in Microservices
	System Evaluation, Latency, and Scalability Test

	CONCLUSION
	ACKNOWLEDGMENT


