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ABSTRACT

Hyperspectral imaging (HSI) enables detailed spectral analysis across numerous
bands, offering transformative potential in diverse domains such as remote sensing,
agriculture, and medical diagnostics. However, the inherent challenges of inter-class
similarity, intra-class variability, and limitations in existing similarity metrics hinder its
effectiveness. To address these challenges, we propose CRNSim, a novel similarity
index that integrates three complementary components: a Chebyshev-based term
to capture extreme spectral deviations, a RMSE-based term to account for global
spectral trends, and a nonlinear adjustment factor to enhance sensitivity to subtle
variations while mitigating outlier influence. Experimental evaluations on benchmark
hyperspectral datasets, including Indian Pines and Salinas Valley, demonstrate the
superiority of CRNSim in improving inter-class separability, outperforming traditional
metrics such as Chebyshev and RMSE. These findings highlight CRNSim’s potential to
advance HSI analysis methodologies, making it a robust tool for fine-grained spectral
differentiation across diverse applications.
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INTRODUCTION

Hyperspectral imaging (HSI) has emerged as a transformative technology
in fields such as remote sensing (Pour et al., 2021; Wang et al., 2022),
agriculture (Agilandeeswari et al., 2022; Wang et al., 2023), and medical
diagnostics (Hao et al., 2021; Tsai et al., 2021), providing rich spectral
information at the pixel level across hundreds of contiguous bands. This
unique capability allows for the detailed characterization of materials and
the extraction of intricate spectral patterns. However, the analysis of
hyperspectral data is inherently challenging due to its high-dimensional
nature, significant inter-class similarity, and pronounced intra-class variance.
These factors necessitate the development of robust and generalizable
methods to quantify spectral dissimilarity effectively.

The selection of a suitable similarity index plays a critical role in HSI
analysis, directly impacting classification accuracy, clustering interpretability,
and computational efficiency. Existing distance metrics, such as Euclidean
distance (Gower, 1985), cosine similarity, and the Spectral Angle Mapper
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(SAM) (Kruse et al., 1993), have been extensively applied due to their
simplicity and effectiveness.

However, these metrics often fall short in capturing the complex spectral
relationships within hyperspectral datasets. For instance, Euclidean distance
primarily measures overall spectral differences but lacks sensitivity to the
subtle differences between spectra, which limits its ability to capture the
nuanced relationships present in hyperspectral data. Conversely, SAM
focuses primarily on angular differences, offering robustness to illumination
changes but neglecting amplitude information, which is often critical for
accurate material differentiation (Vishnu et al., 2013).

Similarly, the Chebyshev distance, another notable metric, has
demonstrated effectiveness in emphasizing extreme spectral deviations.
Unlike Euclidean distance and SAM, the Chebyshev distance is sensitive to
the largest individual differences in spectral bands, making it particularly
useful for identifying outliers or extreme variations within the data.
However, its reliance on maximum differences can limit its applicability in
scenarios requiring the analysis of overall spectral trends or subtle variations.
RMSE, on the other hand, excels in capturing global spectral trends and
average differences, providing a straightforward measure of dissimilarity.
Nevertheless, RMSE may underperform in hyperspectral contexts, as it
can overemphasize global differences while failing to account for localized
or extreme spectral variations critical for distinguishing subtle material
differences. These limitations in existing metrics stress the necessity for a
more integrated approach to spectral similarity measurement, capable of
addressing the multifaceted nature of hyperspectral data.

To address these limitations, we propose a novel similarity index that
integrates three complementary components into a unified framework for
spectral similarity measurement: (1) a Chebyshev-based term to capture
extreme spectral deviations, (2) an RMSE-based term to evaluate global
spectral trends, complementing the Chebyshev term by accounting for overall
consistency in spectral distributions; and (3) a nonlinear adjustment factor
designed to enhance sensitivity to subtle spectral variations and mitigate the
influence of outliers.

Through experimental evaluations on publicly available hyperspectral
datasets, the proposed index demonstrates significant improvements in inter-
class separability compared to traditional metrics. By addressing both global
and local spectral features, this work contributes to advancing HSI analysis
methodologies and broadening their applications in real-world scenarios.

RELATED WORKS

Spectral Library Search Algorithms

Measuring spectral similarity is a cornerstone of HSI analysis, with methods
broadly categorized into stochastic and deterministic measures (Nidamanuri
and Zbell, 2011; Vishnu et al., 2013). Stochastic approaches leverage
statistical properties of spectral data, employing metrics such as divergence,
entropy, and probabilistic models to capture spectral variability (Chang,
1999; 2000). These methods excel in handling complex distributions but
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often demand substantial computational resources and domain-specific
parameter tuning, which limits their broader applicability.

In contrast, deterministic approaches focus on direct comparisons between
spectral signatures.Metrics such as SAM, Euclidean distance, and correlation
(De Carvalho and Meneses, 2000) are widely used, each with distinct
advantages. SAM, for instance, is valued for its robustness to illumination
variations, enabling effective comparisons under varying lighting conditions.
On the other hand, Euclidean distance captures absolute differences between
spectral values, making it useful for applications where the magnitude of
reflectance is critical. However, these deterministic measures frequently
struggle to adapt to diverse spectral characteristics, often resulting in
suboptimal performance in scenarios with overlapping classes or high
spectral noise levels.

Modifications and Hybrid Approaches

The inherent complexity of hyperspectral datasets often necessitates tailored
algorithms designed to address specific applications (Rivard et al., 2008;
Griffiths et al., 2009). Hence, researchers have explored integrating
multiple algorithms into unified frameworks. This approach leverages
the complementary strengths of various metrics, enhancing both the
reliability and precision ofmaterial identification across diverse hyperspectral
contexts. Building on these efforts, significant advancements have been
made in refining existing metrics to better address the challenges.
Hybrid strategies that combine deterministic and stochastic measures have
demonstrated improved performance (Padma and Sanjeevi, 2014). For
example, hybrid methods such as the Spectral Information Divergence (SID)-
based approaches, have gained attention for their ability to leverage the
complementary strengths of different metrics. Notably, SID-SAM (Du et al.,
2004) integrates SID with angular metrics through trigonometric functions
like tangent and sine. Another notable example, the SID-Spectral Correlation
Angle (SID-SCA) (Kumar et al., 2011), merges SID with correlation-based
metrics to enhance the discrimination of subtle spectral variations, such
as crop types. These methods emphasize the value of hybrid strategies
in improving spectral similarity measurement but also point to the need
for continued refinement, particularly in terms of spectral separability and
adaptability to a wide range of hyperspectral data.

THE PROPOSED SIMILARITY SCORE INDEX

Preliminaries

The foundation of our proposed similarity score index lies in distance
metrics, which provide a unified framework for evaluating spectral similarity
and dissimilarity across various measures. To establish a rigorous basis
for this index, we first define a metric space over Euclidean spaces. Let
x = [xi]ni = 1 ∈ Rn represents a vector in n-dimensional Euclidean space,
and {xi} denotes the sequence of elements of the vector x indexed by i. The
standard properties of metric spaces are as follows:
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Definition 1. A metric space M ⊂Rn equipped with a distance function
δ : M×M→ [0, ∞) satisfies

• Non-negativity: For all x, y ∈M, 0 ≤ δ
(
x, y

)
<∞.

• Reflexivity: δ
(
x, y

)
= 0 if and only if x = y.

• Symmetry: δ
(
x, y

)
= δ

(
y,x

)
for all x, y ∈M.

• Triangle inequality: δ
(
x, y

)
≤ δ (x, z) + δ

(
z, y

)
for all x, y, z ∈M.

It is well known that lp spaces, defined on Rn, are metric spaces equipped
with the lp-norm defined as

‖x‖lp =

(
n∑

i = 1

|xi|p
) 1

p

, p ≥ 1.

To ensure mathematical precision in subsequent discussions, we formally
define the max functions as follows:

Definition 2. Let
{
ai
}n
i = 1,

{
bi
}n
i = 1 be sequences of real numbers and

a,b ∈ Rn be vectors, with their i-th elements denoted by ai,bi, respectively.

• The maximum of two vectors is defined as

max
{
a,b

}
=
[
max

{
ai,bi

}]n
i = 1 .

• The maximum value across both sequences is

max
i
{ai,bi} = max

i

{
max

{
ai,bi

}}
To quantify spectral similarity and dissimilarity across n bands, commonly

used metrics such as Cosine similarity, Manhattan, Euclidean, Chebyshev,
Canberra (Lance and Williams, 1966), Chi-square, and Jeffrey distances
(Jeffreys, 1946) are employed. Each metric offers distinct properties that
influence inter-class separability, a crucial aspect for classification and
clustering tasks. Let µ, ν ∈ Rn represent spectral data for classes M and
N, with µ (i) and ν(i) denote the i-th components of µ and ν, respectively.
The formulas for these metrics are then given as follows:

δcos (µ, ν) =
µ · ν

‖µ‖l2 ‖µ‖l2
, δlp (µ, ν) = ‖µ− ν‖lp ,

δCan (µ, ν) =
∑
i

|µ(i)− ν(i)|
µ(i) + ν(i)

, δχ2 (µ, ν) =
1
2

∑
i

(µ(i)− ν(i))2

µ(i) + ν(i)
,

δJef (µ, ν) =
∑
i

(
(µ(i)− ν(i)) log (µ(i))/(ν(i))

)
.

Depending on the chosen metric, the interpretation of distance values can
vary. For example, in lp distances (such as Manhattan (p = 1), Euclidean
(p = 2), and Chebyshev (p = ∞) distances), larger values represent
greater dissimilarity, whereas metrics like cosine similarity interpret larger
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values as indicating higher similarity. Additionally, different metrics produce
distance values on varying scales, as demonstrated in the above definitions.
This variability necessitates a standardized similarity score that adheres to a
common scale, ensuring more consistent and meaningful comparisons.

Based on these observations, we introduce similarity score indices mapping
distance values to a common range [0, 1]. For metrics other than cosine
similarity, the similarity scoreS is defined asS = 1− δ

δmax
. Here, δ represents

the computed distance, and δmax denotes the properly designed maximum
distance across all spectrum bands. For cosine similarity, the similarity score
is identical to the computed distance, Scos (µ, ν) = δcos (µ, ν) .

Mathematical Formulation

The complete definition of similarity score indices for the remaining metrics
from δlp to δJef are defined as follows:

SArea (µ, ν) = 1−
‖µ− ν‖l1

n ·max
i
{µ(i), ν(i)}

,

Slp (µ, ν) = 1−
‖µ− ν‖lp

‖max{µ, ν}‖lp
,

SRMSE (µ, ν) = 1−
1
√
n

∥∥∥∥ µ− ν

max {µ, ν}

∥∥∥∥
l2
,

SCan (µ, ν) = 1−
δCan (µ, ν)

n ·max
i

{
µ(i)

µ(i) + ν(i) ,
ν(i)

µ(i) + ν(i)

} ,
Sχ2 (µ, ν) = 1−

δχ2 (µ, ν)

n/2 ·max
i

{
(µ(i))2

µ(i) + ν(i) ,
(ν(i))2

µ(i) + ν(i)

} ,
SJef (µ, ν) = 1−

δJef (µ, ν)

n ·max
i

{
(µ(i)− ν(i)) log (µ(i))/(ν(i))

} .
ForSArea (µ, ν), we introduce the relative area index as a variation derived

from lp distances, providing an alternative way to interpret spectral data
based on its relative area. By adopting these similarity score indices, we lay the
groundwork for an improved framework in HSI analysis, mitigating biases
caused by differences in metric scales.

Based on the similarity score indices defined above, we propose a new
similarity index,SCRN, which combines three distinct terms with constraints
α + β + γ = 1 and 0 ≤ α,β, γ ≤ 1 as follows:

SCRN (µ, ν) =

αβ
γ

T ·
 Sl∞

SRMSE
N (µ, ν)

 ,

N (µ, ν) = 1 −
1
√
n

∥∥∥∥ log (1+ |µ − ν|)

log (1+max {µ, ν})

∥∥∥∥
l2
.
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This formulation unifies complementary components into a single
framework. Each term addresses specific challenges in hyperspectral
image analysis: the Chebyshev-based term (Sl∞) captures extreme spectral
deviations, the RMSE-based term (SRMSE) evaluates overall spectral trends,
and the nonlinear adjustment factor (N (µ, ν)) enhances sensitivity to subtle
variations while mitigating outlier effects. The index’s design aims to balance
precision in subtle spectral differentiation with robustness in noise-prone
datasets. To demonstrate the practical effectiveness of SCRN, the subsequent
section presents a detailed evaluation using public hyperspectral datasets.
These experiments validate the index’s capability to improve inter-class
separability, showcasing its advantages over existing metrics used in diverse
spectral analysis tasks.

EXPERIMENTS

In this section, we investigate the performance of the proposed similarity
index across diverse hyperspectral datasets. The focus is to evaluate the ability
of the index to capture spectral differences, addressing challenges posed by
each independent similarity index included in ours. While there are various
methods for determining the weights α,β and γ , we set them to 0.3, 0.5, and
0.2, respectively, and present the results of experiments conducted with these
values.

Datasets

Indian Pines (IP) Dataset
Acquired using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor, the Indian Pines (IP) dataset comprises 224 spectral bands and
represents agricultural fields with 16 distinct classes. The dataset is
particularly challenging due to the subtle spectral variations among classes,
which complicates the task of distinguishing them based on spectral
similarity.

Salinas Valley (SV) Dataset
This dataset, captured by the 224-band AVIRIS sensor over Salinas Valley,
California, offers high spatial resolution with 3.7-meter pixels. Covering
an area of 512×217 pixels, it represents diverse land types classified into
16 distinct categories. To enhance data quality, 20 water absorption bands
([108–112], [154–167], 224) were excluded from the analysis.

University of Pavia (UP) Dataset
This dataset was acquired using the Reflective Optics System Imaging
Spectrometer (ROSIS-3) sensor, capturing 610×340 pixels across 103
spectral bands. This dataset is particularly valuable for evaluating distance
metrics in scenarios where inter-class separability is more pronounced, such
as in urban environments.

For each dataset, the mean spectrum is calculated by averaging the
spectral signatures of all pixels within a class. This mean spectrum serves
as a representative profile, facilitating an inter-class comparison of spectral
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distributions. We compute similarity scores for all pairs of class mean
spectra using the proposed similarity index and other benchmark indices as
introduced in the previous section.

Results

Table 1. Average similarity scores across similarity indices and datasets.

Metric IP (%) SV (%) UP (%)

Cosine 98.8 ± 1.4 94.1 ± 6.2 89.3 ± 9.6
Area 95.2 ± 2.4 90.5 ± 3.7 66.6 ± 19.1
Manhattan 89.0 ± 5.7 68.3 ± 13.7 50.9 ± 24.2
Euclidean 86.0 ± 7.2 65.2 ± 15.4 48.3 ± 24.9
Chebyshev 78.1 ± 9.8 59.6 ± 17.0 44.1 ± 26.9
CRN(Ours) 74.8 ± 7.4 52.5 ± 14.5 40.7 ± 20.8
RMSE 88.3 ± 5.8 61.3 ± 16.9 49.7 ± 23.3
Canberra 91.4 ± 4.3 69.7 ± 12.4 55.8 ± 21.7
Chi-square 99.0 ± 0.9 95.8 ± 2.6 78.4 ± 19.1
Jeffrey 89.0 ± 4.1 79.4 ± 7.6 51.2 ± 12.4

As shown in Table 1, the proposed index achieves the lowest mean
similarity scores across all three datasets, demonstrating its superior inter-
class separability.

This consistent distinction outperforms traditional indices, such as the
Chebyshev index, which exhibit higher mean similarity scores. While the
proposed index has a relatively larger standard deviation, this indicates its
ability to capture a broader range of spectral differences—a critical factor in
hyperspectral image analysis.

However, Figure 1 presents the boxplot analysis, which provides further
insight into the performance of the proposed index. Compared to traditional
indices like Chebyshev or RMSE, the IQR for the proposed index is
smaller, indicating that the inter-class similarity scores are more consistently
distributed. The reduced IQR suggests that the proposed index effectively
minimizes extreme variability, allowing for more stable and reliable class
separation.

Figure 1: Boxplots for three hyperspectral datasets – IP, SV, and UP.
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The boxplots also reveal that the proposed index exhibits shorter whiskers
in all datasets, than other indices showing low Q2 values. This indicates its
stability in handling diverse spectral characteristics without being excessively
influenced by outliers. Overall, the proposed index achieves a strong balance
between inter-class separability and resilience to outliers, making it a reliable
and adaptable tool for hyperspectral image analysis.

DISCUSSION

Our future work will focus on optimizing the weights α,β and γ in the
proposed similarity index to enhance its adaptability across diverse HSI
applications. While the current study demonstrates the index’s effectiveness
with a fixed weighting scheme, domain-specific optimization could further
improve its performance. For example, in agricultural applications, greater
emphasis on the nonlinear adjustment term could enhance sensitivity to
subtle crop differences, while urban land-use classification might benefit
from prioritizing the Chebyshev-based term to highlight extreme spectral
deviations.

Additionally, the development of a dynamic weighting mechanism that
adapts to the spectral and spatial properties of datasets represents an exciting
direction for future research. Leveraging machine learning techniques and
domain adaptation strategies, such approaches could ensure robust and
generalizable performance across varied HSI contexts. Integrating these
optimizations would enhance the index’s ability to distinguish between
classes and maintain consistency within classes, addressing the complexities
of HSI more effectively.

Influence of Weighted Components on Similarity Score

Given that different datasets exhibit unique spectral characteristics, careful
adjustment of the weights is essential to optimize the performance of the
proposed similarity index. To facilitate this adjustment, it is important to
understand the relative influence of each component in the index. While the
optimization of the weights α,β and γ for specific datasets remains a subject
for future research, we provide a theoretical foundation for this process by
examining the mathematical impact of each weight on the overall similarity
score, SCRN(µ, ν). This analysis offers valuable insight into the sensitivity
of the similarity measure to changes in the individual components, guiding
future efforts to fine-tune the weights for various spectral characteristics.

To further elaborate, we focus on comparing the relative sensitivities of
the similarity measure to the β-weighted RMSE term and the γ -weighted
nonlinear adjustment term. By mathematically comparing their effects on the
overall similarity score, we aim to highlight how the impact of the γ term
can often be more pronounced than the β term under certain conditions,
even when both weights are equal. This is because the nonlinear term (γ )
captures more subtle spectral variations that RMSE (β) may miss, even in
cases of complex spectral distributions.



CRNSim: A New Similarity Index Capturing Global and Local Spectral Differences 319

Proposition 1. Let µ, ν ∈ Rn be n-dimensional spectral vectors for class m
and n, respectively. Then we see∣∣∣∣∂SCRN

∂β

∣∣∣∣ < ∣∣∣∣∂SCRN

∂γ

∣∣∣∣ .
Proof. Let us first denote δ = [|µ (i)− ν (i)|]ni = 1 and M = max {µ, ν}.

Using these and the definition of SCRN, the inequality above can be
written as ∥∥∥∥ δ

M

∥∥∥∥
l2
<

∥∥∥∥ log(1 + δ)
log (1+M)

∥∥∥∥
l2

.

To prove this, it suffices to show

δ(i)
M(i)

<
log (1 + δ(i))
log (1 +M(i))

for all M (i) , δ (i) > 0. We note that the function log(1 + x)
x decreases for

x > −1 andM (i) > δ (i) > 0 for all spectral data sinceµ (i) , ν (i) are positive.
Hence, the last inequality in the above is satisfied for all M (i) , δ (i) > 0.
� In Figure 2, we illustrate visualizations using representative functions,
β(x, y) and γ (x, y), defined as

β
(
x, y

)
:=

∣∣x− y∣∣
max

{
x, y

} , γ
(
x, y

)
:=

log
(
1 +

∣∣x− y∣∣)
log(1+max

{
x, y

}
)
.

Figure 2: 3D plots of 1− β(x, y), 1− γ (x, y), and their difference.

These functions approximate the behavior of the similarity score
components SRMSE and N respectively and provide conceptual insight into
how variations in the spectral data µ, ν influence the similarity index. While
not direct computations ofSRMSE orN, they serve as proxies to illustrate the
relationship outlined in the inequality given in Proposition 1.

The graphical analysis allows us to directly interpret Proposition 1, in
a sense that γ leads to more sensitive adjustments in the similarity score
compared to β, further emphasizing the greater impact of the nonlinear
adjustment term in certain spectral contexts. Furthermore, the curves of the
element contained in SRMSE and N for the fixed spectrum ν is given in
Figure 3 which also supports Proposition 1.
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Figure 3: Graphs of two functions 1− β(x, y) and 1− γ (x, y) for fixed value y = τ .

CONCLUSION

This study addresses critical challenges in hyperspectral image (HSI) analysis
by introducing CRNSim, a novel similarity index designed to capture both
global and local spectral differences. By integrating Chebyshev-based, RMSE-
based, and nonlinear adjustment components, CRNSim achieves a balanced
approach to spectral analysis, enhancing its ability to differentiate between
subtle material variations. Experimental results on benchmark datasets
confirm its effectiveness in improving inter-class separability, outperforming
traditional metrics such as Chebyshev and RMSE. While CRNSim
demonstrates significant promise, future research will focus on optimizing
its weighting parameters (α,β, γ ) to better adapt to specific domain
applications. For example, agricultural applications may benefit from
emphasizing nonlinear adjustments, while urban land-use classification may
prioritize Chebyshev-based components. Furthermore, dynamic weighting
mechanisms using machine learning and domain adaptation strategies could
further improve its adaptability and robustness. These advancements would
solidify CRNSim as a versatile tool for hyperspectral analysis across diverse
applications, offering new opportunities for precision material identification
and spectral pattern recognition.
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