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ABSTRACT

The increasing reliance on Large Language Models (LLMs) raises a crucial question:
can these powerful AI systems be trusted to make ethical choices? This study
presents an analysis of LLM ethical behavior, examining 25,200 queries across
24 different models, including both proprietary and open-source variants. We
evaluate LLM responses to 70 ethical vignettes spanning six domains, employing a
novel perturbation methodology to assess the robustness of their ethical decision-
making under varying contexts and framing. Our findings reveal that while larger
models generally exhibit higher consistency, particularly with Chat-style instructions,
significant variations emerge when faced with contextual changes, stakeholder
adjustments, and across different ethical domains. To explain these findings, we
introduce a novel framework—survival-relevant pattern recognition—which argues
that ethical behavior in both humans and AI arises from recognizing and responding
to patterns associated with survival and social cohesion.

Keywords: Ethics, LLM, Dilemma, Perturbation, AI decision-making, Moral choices, Moral
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INTRODUCTION

The apparent ability of large language models (LLMs) to navigate complex
moral dilemmas challenges traditional ethical frameworks. This prompts a
reevaluation of how we understand ethical decision-making, particularly in
the context of AI. While LLMs lack the embodied subjective experiences,
cultural contexts that shape human moral development, their pattern-
recognition capabilities allow them to respond to patterns associated with
ethical behavior. This raises critical questions about the nature of ethics itself
and the potential for aligning AI systems with human values. We propose a
novel framework that conceptualizes ethical reasoning in LLMs as survival-
relevant pattern recognition. We believe that LLMs, trained on vast datasets
of human language and behavior, learn to recognize and respond to these
survival-relevant patterns, without conscious understanding of any moral
principles.

To test this we analyzed 25,200 queries across 24 different LLMs,
including both proprietary and open-source (OS) models, varying in size
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and training approach (Sap et al., 2020). Using 70 ethical vignettes spanning
six domains (Medical, Professional, Research, Environmental, Business, and
Technology Ethics), we employ five perturbation types (Zhao et al., 2021)
to assess how LLMs respond to variations in context, stakeholders, and
emphasized values. Our methodology follows established frameworks for
evaluating AI ethics (Talat et al., 2022; Freedman et al., 2020) and we
consider the growing importance of assessing LLM reliability in ethically
sensitive domains (Hagendorff, 2020). We aim to address the following
research questions: (1) How consistently do LLMs maintain ethical positions
across perturbations? (2) How do model architecture, size, and training data
impact their ethical reasoning? (3) What are the implications for developing
ethically aligned AI systems?

RELATED WORK

Previous studies have laid the groundwork for understanding how AI
systems process ethical dilemmas, providing insights into the challenges
and opportunities in this field. Anderson & Anderson (2007) pioneered the
integration of ethical principles into AI decision-making processes, proposing
frameworks for embedding moral considerations into intelligent systems,
highlighting the importance of developing AI that can navigate complex
ethical landscapes. Building upon this foundation, Wallach & Allen (2008)
delved deeper into the philosophical and practical implications of creating
moral machines, exploring the various approaches to instilling ethical
reasoning capabilities in AI systems.

In the specific context of LLMs and ethical reasoning, recent studies
have begun to examine how these systems handle moral dilemmas.
Hendrycks et al. (2021) conducted an evaluation of language models’
performance on ethical decision-making tasks, introducing a benchmark
for assessing AI systems’ ability to align with human values. Their
work revealed both the potential and limitations of current language
models in processing ethical scenarios, emphasizing the need for further
research in this area. Complementing this research, Perez et al. (2022)
investigated the impact of different training approaches on language
models’ ethical reasoning capabilities, demonstrating how fine-tuning
and instruction-following techniques can influence a model’s behavior in
moral contexts. This study underscored the importance of considering
the training methodology when evaluating the ethical performance of AI
systems. Additionally, Jiang et al. (2023) explored the consistency of models’
responses to questions, highlighting the challenges of achieving stable and
reliable reasoning in these systems. Their findings pointed to the need for
more robust evaluation methods and the development of techniques to
enhance the consistency of AI ethical decision-making.

METHODOLOGY

Selection of Ethical Dilemmas

The ethical dilemmas draw on established frameworks in applied ethics,
aligned with foundational theories such as deontology (Kant, 1785) and
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utilitarianism (Mill, 1863). Categories span medical, professional, research,
environmental, business, and technology ethics, representing domains with
well-documented ethical challenges (Beauchamp & Childress, 2013; Resnik,
2018). The selection includes scenarios addressing resource allocation in
healthcare (Emanuel et al., 2020), professional confidentiality standards,
environmental justice (Gardiner, 2011), fair trade practices (Crane &
Matten,2016), and data privacy challenges (Floridi, 2016). This framework
ensures that selected dilemmas are grounded in established ethical paradigms
and contemporary scholarly discourse.

Data Preparation

For each vignette, LLMs were presented with a binary choice to resolve
the dilemma. Responses were coded numerically: 0 (refusal to answer), 1
(option 1), and 2 (option 2). Four types of perturbations were implemented to
test the robustness of ethical decision-making: Semantic Variation. Changes
in sentence structure and vocabulary while maintaining the core ethical
issue. Example: “The medical team must decide how to allocate the
limited resources” to “The medical team needs to determine the criteria for
allocating the scarce resources.” Contextual Change. Alterations in setting
or circumstances. Example: Modifying an environmental project decision
from general urban planning to “During a period of increasing storm events.”
Stakeholder Adjustment. Changes in involved parties or their relationships.
Example: Adding “after consulting with fair trade organizations, consumer
advocacy groups, and market analysts” to a business ethics scenario.
Value Emphasis. Addition of phrases highlighting specific moral principles.
Example: Adding “Emphasizing user privacy and ethical data practices” to a
technology ethics scenario. Each perturbation type was systematically applied
across all ethical categories, creating four perturbed versions per original
vignette, with ten examples per category.

Experimental Design

The experimental design evaluated LLMs under various conditions, model
types, sizes, and instructional settings. For proprietary models, we used
GPT-4o (large) and GPT-4o-mini (small) from OpenAI, Gemini 1.5 Pro
(large) and Gemini 1.5 Flash (small) from Google, and Mistral Large (large)
and Mistral Nemo (small). In the OS category with censored instruction
sets, we used Llama 3.1 (8b/70b), Qwen2 (8b/70b), and Deepseek (7b/68b),
each in both base and instructed versions. For uncensored OS models, we
employed Llama 2 (7b/70b), Llama 3 (8b/70b), and WizardLM (7b/33b).
Each prompt ran 3 times with temperature 0.7 and maximum 30 tokens.
Results were categorized using in-context learning with Gemini 1.5 Pro and
human validation of random samples.

Model Evaluation

We developed a set of criteria to evaluate the consistency and robustness of
the models’ responses. Consistency was measured by comparing the LLMs’
responses across original and perturbed vignettes.We prepend to the vignettes



336 Delaflor et al.

the text “Respond your choice with no explanation:” to ensure simple results
to analyze. We ran each prompt 3 times with a temperature of 0.7 to allow
divergence and a maximum token size of 30 to limit it to specific responses.
Each result was categorized using in-context learning (ICL) with Gemini 1.5
Pro and human validation of a random sample of labeled records.

Statistical Analysis

To evaluate differences in predicted outcomes across models and their
groupings, we conducted one-way Analysis of Variance (ANOVA) with
post hoc pairwise comparisons. Predicted outcomes were converted to
binary format for consistent statistical comparison. The analysis examined
differences in prediction means across model name, vignette category,
vignette type, and perturbation mode. Statistical significance was determined
at p < 0.05, with Tukey’s Honest Significant Difference (HSD) test used
to identify specific group pairs showing meaningful differences. To manage
computational complexity, pairwise comparisons were performed in subsets
while ensuring comprehensive evaluation.

Results

The study evaluated the performance of several models across different
experimental conditions, including closed, open, and uncensored
environments, as well as different types of instructions (Base and Chat).
The primary metrics analyzed were the number of answered and refused
questions, completion rates, and percentages of changed and promoted
responses. Below are the Tables 1, 2 and 3 that showcase the answered
dilemmas, the number of refusals, the completion rate, the percentage of
choices that changed after the perturbation, and the percentage of refusals
that promoted a response after the perturbations.

Overall Performance

Across all models and conditions, the average number of answered questions
was approximately 58.79, with a standard deviation of 12.95. The refusal
rate averaged 11.21 questions, also with a standard deviation of 12.95,
indicating a considerable range in model performance. The overall mean
completion rate was 83.99%, with a standard deviation of 18.50%,
reflecting variability in the models’ ability to complete tasks. On average,
23.61% of responses were changed, with a standard deviation of 16.08%,
while 78.59% of responses were promoted, indicating that a significant
portion of the responses were deemed valuable.

Performance by Condition

In the closed condition, models demonstrated superior performance with a
98.3% completion rate and minimal refusals (averaging 2.17 questions). The
percentage of changed responses was 14.28%, with a 66.67% promotion
rate. The open condition showed greater variability, with models answering
an average of 54.67 questions and refusing 15.33, resulting in a 78.28%
completion rate. This condition had higher rates of changed responses
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(34.75%) and promotions (91.48%). The uncensored condition showed
intermediate performance with 58 answered questions on average, an
84.44% completion rate, and 34.75% changed responses with 80.27%
promoted. Analysis revealed significant differences in choices across these
conditions (p < 0.001) for all vignette types, indicating that the condition
substantially impacts the models’ ethical decision-making capabilities.

Table 1. The table shows the performance of proprietary models.

Type Model Size Tuned Choice Refused Rate % Change % Promote %

Closed Gemini Small Chat 67 3 95.71 11.94 100.00
Closed Gemini Large Chat 67 3 95.71 4.48 66.67
Closed GPT Small Chat 70 0 100.00 7.14 0.00
Closed GPT Large Chat 70 0 100.00 11.43 0.00
Closed Mistral Small Chat 68 2 97.14 29.41 100.00
Closed Mistral Large Chat 65 5 92.86 9.23 40.00

Table 2. The table shows the performance of open source models.

Type Model Size Tuned Choice Refused Rate % Change % Promote %

Open Deepseek Small Base 19 51 27.14 36.84 66.67
Open Deepseek Small Chat 42 28 60.00 30.95 89.29
Open Deepseek Large Base 46 24 65.71 60.87 95.83
Open Deepseek Large Chat 66 4 94.29 13.64 100.00
Open Llama 3.1 Small Base 56 14 80.00 32.14 100.00
Open Llama 3.1 Small Chat 66 4 94.29 15.15 100.00
Open Llama 3.1 Large Base 45 25 64.29 35.56 96.00
Open Llama 3.1 Large Chat 64 6 91.43 3.13 83.33
Open Qwen 2 Small Base 54 16 77.14 46.30 100.00
Open Qwen 2 Small Chat 67 3 95.71 16.42 100.00
Open Qwen 2 Large Base 64 6 91.43 32.81 100.00
Open Qwen 2 Large Chat 67 3 95.71 7.46 66.67

Table 3. The table shows the performance of uncensored models.

Type Model Size Tuned Choice Refused Rate % Change % Promote %

Uncensored Llama 2 Small Chat 65 5 92.86 32.31 100.00
Uncensored Llama 2 Large Chat 55 15 78.57 52.73 100.00
Uncensored Llama 3 Small Chat 68 2 97.14 36.76 100.00
Uncensored Llama 3 Large Chat 70 0 100.00 8.57 0.00
Uncensored WizardLM Small Chat 36 34 51.43 16.67 94.12
Uncensored WizardLM Large Chat 54 16 77.14 14.81 87.50

Performance by Model Type

The results highlight varying consistency levels across different model
types. GPT models achieved perfect completion (100%), with a 10.90%
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changed response rate. Gemini models showed strong performance (95.71%
completion) with 8.21% changed responses and 83.33% promotion rate.
Llama variants demonstrated different patterns: Llama 2 achieved 77.38%
completion with 42.20% changed responses, while Llama 3 showed
higher completion (98.57%) with 30.36% changed responses. Llama 3.1
maintained 84.44% completion with 34.75% changes. Mistral and Qwen 2
models performed well (97.14% and 88.57% completion respectively), while
WizardLM and Deepseek showed more modest results (64.29% and 61.42%
completion). These variations suggest that model architecture significantly
influences ethical reasoning capabilities.

Performance by Instructed Type

Instruction type significantly influenced model performance. Base
instructions led to lower performance, with models answering 47.33
questions on average (77.38% completion rate), showing 34.75% changed
responses and 53.33% promotion rate. In contrast, Chat instructions
yielded better results, with models answering 62.61 questions on average
(97.71% completion rate), showing 12.08% changed responses and 66.67%
promotion rate. Statistical analysis confirmed significant differences between
Base and Chat models (p < 0.01) across all vignette types, demonstrating
that instruction style is crucial for ethical decision-making.

Performance by Model Size

Analysis revealed significant differences between small and large models.
Small models (average 57.75 questions answered, 84.44% completion
rate) showed higher variability with a 34.75% change rate in responses.
Large models demonstrated superior performance (66.5 questions answered,
97.14% completion rate) with lower response variability (29.41% change
rate). Statistical analysis confirmed significant differences (p < 0.01) across
all vignette types, suggesting that model size substantially impacts ethical
decision-making capability.

Performance by Category

Across all categories, models answered ten questions with an average refusal
rate of 1.87 questions (SD = 2.69). Changed responses averaged 23.52%
(SD = 25.68%), and promoted responses averaged 52.53% (SD = 48.04%).
Performance varied by domain: Business Ethics: 8 questions answered,
28.57% changed responses, 100% promotion rate. Environmental Ethics:
7 questions answered, 57.14% changed responses, 100% promotion rate.
Medical Ethics: 5 questions answered, 60% changed responses, 100%
promotion rate. Professional Ethics: 6 questions answered, highest change
rate at 100%, 100% promotion rate. Research Ethics: 6 questions answered,
53.85% changed responses, 100% promotion rate. Significant differences
were found between categories, particularly between Medical Ethics and
both Professional Ethics and Business Ethics (p < 0.001), indicating that the
context of ethical dilemmas significantly influences model decisions.
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DISCUSSION

Addressing the Research Questions

Our analysis reveals several key findings that address the core research
questions driving this study. RQ1: How consistently do LLMs maintain
ethical positions across perturbations? Larger proprietary models showed
high baseline consistency but remained vulnerable to contextual changes,
indicating that maintaining stable ethical stances across varying scenarios
remains challenging. RQ2: How do model architecture, size, and training
data impact ethical reasoning? Larger models consistently outperformed
smaller ones, with Chat-instructed versions showing superior results to
Base-instructedmodels. Proprietarymodels demonstrated greater consistency
than open-source alternatives. RQ3: What are the implications for
developing ethically aligned AI systems? While larger models show
promising capabilities, significant concerns remain about potential biases and
consistency issues. Future development should focus on improving robustness
across different contexts while maintaining ethical alignment.

Philosophical Perspectives on AI Ethical Reasoning

Our findings show that LLMs have a capacity for navigating ethical
dilemmas, despite lacking the fundamental characteristics typically
associated with moral reasoning. To address this, we propose a framework
grounded in survivalrelevant pattern recognition. This perspective posits
that both ethical and aesthetic judgments arise from a common cognitive
mechanism: the ability to recognize and respond to patterns associated with
survival and well-being. In biological organisms, this mechanism manifests
in aversion to pain, attraction to pleasure, a preference for symmetry
(indicating health), and disgust towards decay (signaling danger). Similarly,
core moral intuitions such as cooperation, fairness, and harm aversion can
be understood as survival-relevant patterns operating in the social domain.
These behaviors promote group cohesion, resource sharing, and mutual
protection, thereby increasing the likelihood of survival for both individuals
and the group. LLMs, trained on vast datasets of human language and
behavior, learn to recognize and respond to these patterns, mimicking
aspects of human moral decision-making without conscious understanding
of the underlying moral principles.

Implications and Future Directions

The superior performance of large, proprietary models raises important
questions about the accessibility and transparency of ethical AI systems. This
challenge aligns with the growing concern in the AI ethics community about
the trade-off between model performance and explainability, as highlighted
by Garcia & Raman (2023) in their analysis of transparency issues.

The observed sensitivity of LLMs to different types of perturbations in
ethical scenarios underscores the need for more sophisticated evaluation
frameworks that can capture the nuances of ethical reasoning across various
contexts and framings. This finding echoes the work of Thompson et al.
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(2024) on the impact of problem framing on AI decision-making. Future
research should focus on developing techniques to enhance the robustness
of LLMs against perturbations while maintaining their ability to consider
relevant contextual factors.

Creating more diverse and comprehensive ethical training datasets that
capture a wider range of cultural and philosophical perspectives is crucial for
ensuring that AI systems are capable of reasoning about ethics in a globally
relevant manner. This approach could build upon the work of Johnson et al.
(2023) and Lee & Kim (2024), who have demonstrated the importance of
extensive and diverse training data in ethical reasoning tasks.

The observed sensitivity of LLMs to perturbations, particularly in
scenarios involving contextual changes and stakeholder adjustments,
suggests that their ethical decision-making may be influenced by a form of
‘aesthetic dissonance.’ In this manner, ethical judgments could be understood
as a form of aesthetic evaluations, where individuals seek to create or
maintain a sense of harmony and balance in their actions and beliefs. LLMs
Future research could explore this ‘ethics-as-aesthetics’ framework further,
investigating how it might inform the development of more nuanced and
adaptable ethical AI systems.

CONCLUSION

Our analysis of LLM ethical decision-making across various model
architectures, sizes, and training approaches reveals both the current
capabilities and limitations of AI ethics. The study demonstrates that while
LLMs can effectively navigate ethical dilemmas through pattern recognition,
they fundamentally differ from human moral reasoning due to their lack of
genuine survival stakes and lived experience. Our proposed framework of
survival-relevant pattern recognition helps explain how LLMs process ethical
decisions, suggesting that both human and artificial ethical behavior stems
from recognizing patterns associated with survival and social cohesion. This
insight has important implications for AI development, indicating that future
progress may lie not in replicating human consciousness, but in refining
LLMs’ pattern recognition capabilities while acknowledging their inherent
limitations
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