
Human Interaction and Emerging Technologies (IHIET-AI 2025), Vol. 161, 2025, 367–377

https://doi.org/10.54941/ahfe1005929

Diversity of Perception in Human-AI
Collaboration
Mohamed Quafafou

LIS, CNRS/Aix-Marseille University/UTLN, Marseille, France

ABSTRACT

Two key approaches to building AI systems are Model-Centric AI (MC-AI) and Data-
Centric AI (DC-AI). When AI systems are deployed in real-world environments, they
become part of a socio-technical ecosystem, interacting with humans, processes,
and other systems. This interaction often occurs in hybrid teams, where humans
and AI collaborate to achieve shared objectives. However, human influences, at any
stage, can lead to suboptimal outcomes, such as model drift or reduced performance.
In fact, human introduces variability, as personal experience, biases, and decision-
making approaches can significantly impact outcomes. Changing one human in the
process can alter the results dramatically. This paper review processes involved into
building, deploying, monitoring, and maintaining AI-systems and discusses human
influences at each step, the potential risks that may arise and the main skills necessary
to avoid human’s negative influences. By incorporating perception diversity and
tolerating ambiguity, the computing-with-perception framework enhances human-AI
collaboration, enabling systems to manage complexity and ambiguity in human-AI
collaboration considering real-world problems.
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INTRODUCTION

Artificial Intelligence (AI) is transforming human life and is shaping the
present and future in profound ways. Two key approaches to building AI
systems are model-centric AI (MC-AI) and data-centric AI (DC-AI). In DC-AI
(Zha et al., 2025), the emphasis lies on enhancing the quality, quantity,
and diversity of training data, while MC-AI (Zhu-Hua, 2021) focuses on
improving the performance of machine learning models themselves. AI
systems are typically developed by humans without direct collaboration
between AI and users during the design phase. Once deployed in real-world
environments, these systems become integral to socio-technical ecosystems,
where they interact with humans, organizational processes, and other
technologies. In many cases, AI operates within hybrid teams, where humans
and AI collaborate to achieve shared objectives. These interactions influence
decision-making, workflow dynamics, and overall system performance,
requiring careful integration to ensure effective human-AI collaboration in
real-world applications.

Human-AI collaboration (Fragiadakis et al., 2024) is essential not only
during the deployment and use of AI systems but also throughout their
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development. It plays a crucial role in shaping AI models, particularly
in Data-Centric AI (DC-AI) and Model-Centric AI (MC-AI) approaches.
Integrating human expertise at every stage helps enhance data quality,
improve model performance, and ensure AI systems align with real-world
needs and ethical considerations. In fact, human choices, and decisions at
any stage—such as poorly defined objectives, irrelevant feedback, or lack
of trust in AI—can lead to suboptimal outcomes, such as model drift or
reduced performance. Hence, when AI agents work interdependently toward
a common goal alongside human agents (Li et al., 2024), human influence
introduces variability, as personal experience, biases, and decision-making
approaches can significantly impact outcomes. Changing one human in the
process can alter the results dramatically.

To face the challenges that human-AI systems (Wang et al., 2020; Yang
et al., 2020) face, we consider that AI-systems do not depend only on data,
methods, algorithms, heuristics, infrastructure and technologies, but they
are mainly depending on human with whom they interact and collaborate.
This assumption is important because, beyond humans objective decisions,
their subjectivity and perception diversity play a central role in problem-
solving and decision-making. Humans interpret objects, concepts, and events
through the lens of their unique experiences, often tolerating contradictions
and ambiguity (Reinecke et al., 2025). The main question is how to
account for human perception diversity in artificial intelligence. Dealing
with this question will allow us to consider the impact of each human in
hybrid-teams and its effect on the collaboration. Then, we can manage
alternatives solutions corresponding to the different humans’ perceptions.
To address the diversity of human choices, decisions, and actions in
Human-AI collaboration, we incorporate a perception-driven approach. This
enables AI systems to adapt to individual and contextual variations across
different stages, including data processing, model development, deployment,
monitoring, and maintenance. By integrating perception, we enhance AI’s
ability to understand and respond to human behaviors, ensuring more
effective and adaptive collaboration. This approach is embodied in the
framework we propose, which is based on a new notion of sets, where a
set is not completely characterized by its members but rely essentially on its
observers (Quafafou, 2020).

HUMAN IN DATA-CENTRIC AI

Data-centric AI (DC-AI) posits that improving the quality of the data—such
as addressing issues like noise, biases, missing values, or inaccuracies—can
be as effective, or even more effective, than refining the models themselves.
The key idea is that good data can enhance the performance of simpler
models, while poor data can limit even the most advanced models: enhancing
data quality leads to more reliable and robust AI models. However, human
influences key stages like defining the problem, selecting data sources,
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labeling data, addressing biases, and pre-processing datasets, etc. (see
Table1 1.)

At the beginning of the DC-AI process, we must clearly define the problem
and determine the role of data in solving it, e.g., identifying the task,
specifying the target variables and features required for the task, and defining
the data requirements, including types, volume, and quality.

After, we must acquire data that is relevant, diverse, and representative of
the problem domain, e.g., gathering data from multiple sources, ensuring
the data aligns with the problem requirements. addressing diversity by
collecting data representing various conditions, populations, or scenarios.
In the context of supervised learning, we must create high-quality labeled
datasets, i.e., using manual annotation by domain experts or crowd-sourced
annotators, employing semi-automated or fully automated labeling tools, if
applicable, validating labels, ensuring consistency in the annotation process,
and handling edge cases or ambiguous data carefully with domain expertise.

The data, representing the raw material, is now available and must be
cleaned, preprocessed, and transformed into a usable format for model
training. Hence, we apply different methods for: (1) handling missing values,
duplicates, outliers, (2) normalizing or standardize numerical features, (3)
encoding categorical variables, (4) tokenizing or pre-processing text data, and
(5) resizing or normalizing image data, if applicable, etc.

Table 1. Some human’s influences in data centric AI.

Step Human Influence Potential Risks Required Skills

Data Collection
& Acquisition

- Selecting relevant data sources
and ensuring data diversity.
- Defining data collection
protocols to avoid biases.
- Ensuring legal and ethical
compliance

- Biased or unrepresentative
data leading to model
discrimination.
- Data privacy violations.
- Poor-quality data affecting
downstream performance.

- Domain expertise to
understand data relevance.
- Knowledge of data privacy
laws and ethical AI principles.
- Data engineering skills to
manage data pipelines.

Data Cleaning
&
Preprocessing

- Identifying and handling
missing, duplicate, or
inconsistent data.
- Defining normalization,
standardization, and feature
engineering techniques.
- Applying de-biasing strategies
to ensure fairness.

- Incorrect cleaning may
remove important information.
- Introducing unintended biases
while filtering or augmenting
data.
- Poor preprocessing leading to
model instability.

- Proficiency in data
preprocessing tools.
- Understanding of statistical
methods to detect anomalies.
- Ethical AI knowledge to
minimize biases.

Data
Annotation &
Labeling

- Establishing high-quality
annotation guidelines.
- Managing human labelers to
ensure consistency.
- Detecting and correcting
labeling errors or biases.

- Subjective labeling leading to
inconsistencies.
- Annotation errors impacting
model accuracy.
- Scalability issues when relying
solely on human annotators.

- Experience in annotation
tools.
- Understanding of
inter-annotator agreement
techniques.
- Knowledge of active learning
to optimize labeling efforts.

Data
Augmentation
& Enrichment

- Designing synthetic data
generation strategies.
- Augmenting datasets to
improve model generalization.
- Ensuring added data
maintains real-world relevance.

- Artificially generated data
may not reflect real-world
distributions.
- Over-augmentation leading to
data redundancy.
- Introducing artifacts that
distort model learning.

- Knowledge of data
augmentation techniques.
- Statistical skills to validate
augmentation effectiveness.
- Domain expertise to maintain
data authenticity.

1Such tables summarize the influence of human, but they are not exhaustive because the limited number
of pages.
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Before analyzing the data, it is crucial to validate its accuracy, quality, and
relevance for the intended task. This involves conducting statistical analyses,
identifying potential biases and imbalances, ensuring data integrity, and
visualizing the data to detect anomalies or inconsistencies. These steps help
establish a reliable dataset, reducing errors and enhancing the effectiveness
of subsequent analysis and model development. In some situation, we need
to augment the data to increase the diversity of the dataset without collecting
additional data.

In short, human oversight is critical in data-centric AI, as poor data
quality directly impacts model fairness, reliability, and performance. To
avoid negative influences, professionals must combine domain expertise, data
engineering proficiency, statistical knowledge, and ethical AI principles to
ensure responsible data handling. After all these tedious steps, we develop a
model using the model-centric AI process.

HUMAN IN MODEL-CENTRIC AI

Model-Centric AI (MC-AI) primarily focuses on enhancing machine learning
algorithms and models to achieve better performance. By refining the model’s
architecture, algorithms, and parameters, MC-AI aims to deliver superior
results. In MC-AI process, the journey from problem definition to model
optimization is methodical and precise, but human influence is crucial (see
Table 2).

In Model-Centric AI, the problem definition phase is a critical step
where humans shape the project’s direction. This involves clearly identifying
the problem, ensuring AI is a suitable solution, and aligning objectives—
such as improving accuracy, reducing costs, or predicting behavior—with
business needs. A key consideration is whether the problem can be effectively
addressed using available data, a process influenced by Data-Centric AI.
Care must be taken to avoid embedding biases or unethical objectives.
Selecting appropriate evaluation metrics (e.g., accuracy, precision, recall,
F1-score) is crucial to ensure the model’s success. However, misaligned
objectives or poorly chosen metrics can lead to ineffective or even harmful
models. Overfitting to biased or irrelevant data further compounds these
risks. Success in this phase requires domain expertise to grasp problem
complexities, strong communication to align stakeholders, and analytical
thinking to establish clear, measurable success criteria.

In the model development phase, humans play a crucial role in
designing and training machine learning models. This includes selecting
appropriate algorithms (e.g., random forests, neural networks) and fine-
tuning hyperparameters (e.g., learning rates, batch sizes) to optimize
performance. Rigorous experimentation is conducted to improve robustness
and prevent biases. However, human intervention introduces risks such as
overfitting, which harms generalization, and ethical concerns like fairness
and transparency. To mitigate these challenges, expertise in machine learning
frameworks, mathematics, and ethical AI principles is essential, ensuring
models are both effective and responsible in real-world applications.
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Table 2. Some human’s influences in model centric AI.

Step Human Activities Potential Risks Required Skills

Problem
definition

- Clearly articulate the goal
of the model
- Assessing whether the
problem is solvable with
available data and
techniques
- Ensuring the problem
definition does not
inadvertently encode bias
or unethical goals
- Selecting evaluation
metrics

- Misaligned objectives or
metrics
- Overfitting goals to
irrelevant or biased aspects
of the data

- Good domain expertise to
understand the problem
and its constraints
- Strong communication
skills
- Analytical thinking

Model
development

- Model selection
- Hyperparameter Tuning
- Experimentation
- Incorporating Ethical
Considerations

- Overfitting to training
data
- Ignoring ethical
implications

- Proficiency in machine
learning frameworks
- Strong mathematical
foundation
- Knowledge of fairness
metrics
- Knowledge of ethical AI
principles.

Model
Evaluation

- Defining Evaluation
Metrics
- Bias Testing
- Robustness Testing
- Model Interpretability

- Over-reliance on a single
metric
- Insufficient bias testing

- Knowledge of evaluation
metrics
- Familiarity with tools for
fairness
- Ability to interpret and
explain model behavior

Model
Optimization

- Hyperparameter Tuning
- Model Simplification
- Use regularization
- Model Compression
- Improving Generalization
- Optimize the model to
scale efficiently and making
it interpretable

- Excessive optimization
- Focusing solely on
efficiency
- Amplifying biases present
in the data
- Overlooking hardware or
software constraints
- Ignoring ethical
implications

- Advanced knowledge of
machine learning
algorithms and their
optimization techniques
- Expertise in
hyperparameter tuning
methods
- Familiarity with
regularization techniques
- Proficiency in model
interpretability tools
- Ability to analyze
trade-offs
- Understanding of metrics
beyond accuracy
- Working closely with
domain experts
- Knowledge of AI ethics
and fairness

Once the model is trained, its performance is evaluated using appropriate
metrics. This involves selecting evaluationmetrics based on task requirements
and deciding on validation methods, such as k-fold cross-validation.
Performance metrics are interpreted to identify areas for improvement.

Finally, the model optimization step begins to enhance model
performance by addressing identified weaknesses. This involves fine-tuning
hyperparameters and model architecture, and potentially incorporating
advanced techniques like transfer learning or distillation. In this phase,
humans play a crucial role in testing the model for performance, robustness,
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and fairness. They define evaluation metrics by selecting those that reflect
real-world performance, such as precision for fraud detection and recall for
medical diagnosis. Additionally, they assess the model for potential biases
across different groups, test it on edge cases and adversarial scenarios, and
ensure it is interpretable and explainable to stakeholders. The main risks of
human intervention include over-reliance on a single metric, which can lead
to skewed results, and insufficient bias testing, which may result in unfair or
discriminatory outcomes. To mitigate these risks, several competencies are
essential: knowledge of evaluation metrics and their alignment with business
goals, familiarity with fairness testing tools, and the ability to interpret and
explain model behavior.

Risks include over-optimization, which may harm generalization, create
overly complex models, or degrade fairness. Ignoring deployment constraints
or ethical considerations can also lead to impractical or harmful outcomes.
Success requires expertise in machine learning, ethical AI principles, and
domain knowledge to make informed, balanced decisions.

After the development of the model, we deploy it and becomes part of
a socio-technical ecosystem where it interacts with humans, processes, and
other systems.

HUMAN IN DEPLOYMENT, MONITORING AND MAINTENANCE

Humans play a critical role in every phase of the deployment, monitoring, and
maintenance of an AI system. Their expertise, decisions, and interventions
influence the success and ethical implementation of these systems. Below will
briefly introduce the main steps and we discuss how humans can influence
each one among them, the potential risks they require, and the required skills
needed to avoid negative consequences (see Table 3.)

Let us start with the deployment phase that involves integrating the
machine learning model into production environments. It consists of several
steps, for example infrastructure setup, model integration, deployment
pipeline, scalability and optimization.

In the infrastructure setup step, human influences concern the selection
of appropriate hardware and cloud infrastructure (e.g., GPUs, TPUs, or
edge devices) and setting up software environments. This creates potential
risks like a poor resource planning may lead to performance bottlenecks or
excessive costs. To avoid negative human influence, the person in the loop
must have several skills like knowledge of cloud platforms, he must also
be familiar with hardware requirements for AI, and understands DevOps
practices. Moreover, human can also influence model integration as he
decides how to deploy the model, choosing deployment tools, and designing
the API. Hence a potential risk arises consisting of an inefficient deployment
strategy, which may lead to misalignment between the model’s output and the
application requirements. Thus, several skills are required like to have a good
knowledge of APIs and frameworks for model serving, software development
and system integration skills and the ability to understand business needs to
align technical decisions.
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Table 3. Some human’s influences during the deployment, monitoring and
maintenance phases.

Step Human Influence Potential Risks Required Skills

Deployment
& Integration

- Model Selection &
Readiness Check
- Infrastructure Setup
- Scalability & Performance
Optimization
- Integration with Business
Systems:
- Security & Compliance
Validation

- Deploying an untested or
biased model leading to
failures.
- Performance bottlenecks
due to poor infrastructure
choices.
- Security vulnerabilities
exposing sensitive data.

- Proficiency in cloud
platforms (AWS, Azure,
GCP) and containerization
(Docker, Kubernetes)
- Knowledge of model
optimization (quantization,
pruning) for efficient
deployment.
- Understanding of security
best practices and
compliance standards.

Monitoring
&
Performance
Tracking

- Defining Key Performance
Indicators (KPIs)
- Real-time Model
Performance Analysis
- Error Analysis & Failure
Investigation
- Anomaly Detection

- Ignoring model drift leads
to outdated and unreliable
predictions.
- Failure to detect bias
shifts can reinforce
discrimination over time.
- Inadequate logging makes
it difficult to troubleshoot
issues.

- Expertise in monitoring
tools.
- Statistical knowledge for
drift detection and root
cause analysis.
- Experience with logging
frameworks and automated
alerting.

Continuous
Model
Updates &
Retraining

- Data Refresh & Labeling
Strategies
- Model Retraining
Pipelines
- Fine-tuning for New Use
Cases
- Ethical & Bias Audits

- Retraining on biased or
noisy data leading to
performance decline.
- Overfitting to recent data,
reducing generalization.
- Ignoring fairness metrics,
causing ethical concerns.

- Proficiency in data
versioning tools (DVC,
Delta Lake).
- Experience with
automated ML pipelines
(Kubeflow, Airflow).
- Understanding of fairness
metrics and AI ethics.

Infrastructure
Maintenance
& Scalability

- Resource Optimization
- Hardware & Software
Upgrades
- Disaster Recovery &
Backup Planning
- Energy Efficiency &
Sustainability

- Downtime or system
failures due to outdated
infrastructure.
- High operational costs
from inefficient resource
allocation.
- Environmental impact
due to excessive energy
consumption.

- Experience in cloud cost
management and
autoscaling strategies.
- Knowledge of sustainable
AI practices and
energy-efficient computing.
- Expertise in DevOps tools
(Terraform, Ansible) for
infrastructure automation.

Humans play a crucial role in designing CI/CD pipelines, which automate
the deployment and updating of AI systems. Poor pipeline design can cause
deployment delays, errors, and production bugs, compromising system
reliability and performance. To mitigate these risks, expertise in CI/CD tools,
scripting, automation, and MLOps principles is essential. A well-designed
pipeline ensures smooth integration, efficient model updates, and automated
lifecycle management, reducing manual intervention and minimizing errors.
By implementing robust automation strategies, teams can enhance the
reliability, scalability, and maintainability of AI systems in production
environments.

Finally, human influence the model optimization for inference and scaling
deployments. In this case the potential risk is Under- or over-scaling
infrastructure, leading to poor user experiences or wasted resources. Hence,
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good knowledge of scaling systems and model optimization techniques for
deployment are necessary for good human-AI collaboration.

WhenAI-systems are developed and deployed, the followingmain question
arise: can they have abilities of human to live in the real world, e.g., physical
world?

COMPUTING WITH PERCEPTION

Humans vs. Machines

Humans achieve their daily goals using their ability to think, e.g., various
cognitive abilities, including reasoning and decision-making. However,
we often overlook the influence of the real, physical world in human-
AI collaboration, despite human’s perceptions playing a crucial role in
shaping human thought processes, choices, and decisions. Understanding this
interaction is essential for accuratelymodeling human cognition and behavior
in human-AI collaboration.

As pointed by John McCarthy, today’s machines are limited because
their relation to the world is almost non-existent: “What the robot believes
about the world in general doesn’t arise for the limited robots of today
because the languages they are programmed to use can’t express assertions
about the world in general” (McCarthy 2008). On the contrary, humans
perceive the world and manage all aspects of everyday life by allowing
or tolerating contradictions and ambiguities, whereas machines perform
computation under consistency (no contradiction) and completeness (no
ambiguity) constraints.

Human perception extends beyond the five senses, being shaped by factors
such as education, culture, and past experiences. As AI continues to evolve,
perception will play an increasingly vital role in modern life. Advancements in
transportation, social media, and global communication havemade the world
more interconnected, enabling rapid information exchange. This fosters
diverse viewpoints, emotions, and expressions, but also facilitates the spread
of misinformation and fake news. In this hyper-connected environment,
humans and machines interact extensively, supported by technologies that
collect, store, and process massive amounts of data. As a result, individuals
may interpret the same reality differently, shaping personalized perspectives
based on their unique perceptions: we are in the same world, but each one
lives in his own world. To enhance Human-AI collaboration, we integrate
perception-aware AI systems, ensuringmore efficient, robust, andmeaningful
interactions between humans and machines.

Perceptions and Sets

Epistemologists have proposed various theories of what perception is and
how we perceive reality, i.e., the outside world. The three main perception
schools (Lewis, 1946) are: (1) In naive realism we directly perceive the world
as it is; i.e. things are what they seem, (2) Representative realism is an
alternative view, developed by John Locke (Uzgalis, 2007), where we are
actively involved in perception, and (3) Idealism,which is defended byGeorge
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Berkeley who is persuaded by the thought that we only have direct access
to our experiences of the world, but not to the world itself: to be is to be
perceived. Beyond these three introduced perception theories, on one hand,
our knowledge is related to our perception (Russel, 1967) while, on the other
hand, our knowledge, or at least common knowledge, can be mathematically
formalized using set theory.

Beyond the three perception theories introduced, knowledge and
perception are deeply interconnected. On one hand, our understanding of
the world is shaped by our perception. On the other hand, knowledge—
particularly common knowledge—can be mathematically formalized using
set theory. This formalization provides a structured way to represent and
analyze shared understanding, enhancing our ability to model perception-
driven reasoning. Thus, using fuzzy sets, Zadeh has introduced, in his
paper (Zadeh, 2001), a computational theory of perception considering
that perceptions are intrinsically imprecise and stressed the need of “a
methodology in which the objects of computation are perceptions -
perceptions of time, distance, form, direction, color, shape, truth, likelihood,
intent, and other attributes of physical and mental objects”.

Diversity of Perceptions and oSets

We have introduced accessible sets or oSets, which are sets that depend on
their observers. Let’s consider that the external world is represented by the
universe U, where each concept c of the real world has its own representative
element Xc∈2U or X ∈ 2U in short. In this context, each observer i∈I perceives
the concept X through his own perception function fi and the perception of
X by i is fi(X). So, ∀i∈I, ∃! fi: 2U→2U, such that fi(X) is the perception of X
by the observer i.

We say that X is accessible for the observer i if and only if fi(X)=X. The
accessibility notion is related to the perception and can be best summarized
as follows “to be accessible is to be perceived”, which is weaker than the
Berkeley’s idealism “to be is to be perceived”.

We can generalize this definition considering several observers
simultaneously. In this context and object o can belong to set X for a given
observer i, but not for another observer j, e.g., o∈fi(X), but o∈|fj(X). Thus,
we introduce a new ternary membership relation, denoted ∈i, where x ∈i X
means that “x is perceived, by the observer i, to be a member of X”. Doing
so, we do not exclude the variability of perception of concepts assuming
their multiplicity. In fact, the observer i has his own space Ui=(U,{i}). Hence,
each observer constructs his universe according to his perception of both
concepts and use it for reasoning, decision making and collaboration with
AI-systems. The constructed space may be identical to the real world; more
or less different or completely different.

eHealth Example: Blood Pressure and Weight

The description of the computing with perception framework is beyond the
scope of this article, but let’s take a simple example to show how oSets
can be used and to underline their methodological impact on human-AI
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collaboration. Consider the following e-health problem, where a doctor is
collaborating with an AI-system to resolve the flowing problem: “predict a
patient’s blood pressure from their weight”. In machine learning (ML), this
problem known as “simple linear regression”. Several alternative solutions
are possible, including: (1) the AI-system has a prior knowledge of ML
methods of the literature, (2) the doctor interact with a large language model
(LLM), etc. Each solution its advantage and limits, for example, it’s a hard
task to update the knowledge of ML methods, and LLM can hallucinate
leading to false solutions. Using computing with perception framework, the
AI-systems start analyzing its previous interaction with other persons, which
they have treated this regression problem, and which methods they have used.

This analysis results into 4 users u1, u2, u3 and u4 that they have used 6
methods, which are Linear Regression (LiR), Ridge Regression (RR), Lasso
Regression (LaR), Elastic Net Regression (ENR), Probabilistic Approaches
(PA), and Neural Network (NN). For example, the first and fourth users
used only one method, whereas the second and third used two methods, e.g.,
u1={LiR}, u2={LiR, ENR, NN}, u3={PA, NN }and u4={RR}. The question
is then which method to use?

This question is crucial because there is no consensus between the four
users: u1 ∩ u2 ∩ u3 ∩ u4 = ∅. Hence, we try to rank method according to
the of their users. The result is: LiR and NN are ranked 1 as they are used by
two users, ENR, PA, the other methods are ranked 2 because they are used
by only 1 user, and LaR is not ranked as it is not used. Hence, can we decide
to use LiR and/or NN? Here, we are in a situation of total ignorance because
two users have used these two methods, but two others have not used them.
In this case where the decision is blocked, we consider that methods to use
to resolve the regression problem cannot be represented by a set, but it will
be by an oSet. How to compute this oSet?

We proposed a hypergraph-based algorithm to compute “minimal
admissible sets”, (see Quafafou, 2020; 2016). The resulted oSet is X = {{LiR,
ENR, RR}, {PA, LiR, RR}}, which is a set of sets representing the diversity of
perception by the four users of the set of ML methods to use to resolve the
doctor’s problem, e.g., predict a patient’s blood pressure from their weight.
The interpretation is as follows: there are not just one method or a single
set of methods to apply, but two distinct sets of methods—Set {LiR, ENR,
RR} and Set {PA, LiR, RR}—based on the solutions provided by the four
users who have already resolved the problem. Hence, the doctor will use an
ensemble learning approach based on methods in {LiR, ENR, RR} or {PA,
LiR, RR}. Using this result, the doctor follow DC-AI and MC-AI processes
and deployment, monitoring, and maintenance phases previously introduced
in this article.

CONCLUSION

Humans play a pivotal and crucial role during the development of AI-systems
and their usage. Their choices, and decisions at any stage can lead to
suboptimal outcomes, making the collaboration toxic. In this paper we have
analyzed both the construction and the usage of AI-Systems showing the
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important role of humans’ perceptions and introduction of computing with
perception based on oSets.
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