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ABSTRACT

Recently, advances in artificial intelligence (Al) have enhanced the performance
of classification tasks in the medical domain, including signal analysis such as
electrocardiogram (ECG). As a respiratory disorder, obstructive sleep apnea (OSA)
presents distinct features in ECG signals that allow for detection. However, these
patterns are typically irregular and highly variable, especially in the condition’s
early stages, which often leads to poor performance even with deep learning
techniques. Based on temporal dependency and non-stationary features of ECGs,
our study proposed a model that integrates Bi-directional Long Short-Term Memory
(Bi-LSTM) with Convolutional Neural Networks (CNN) to classify OSA disorders
by ECG recordings. By the experiment results, our approach achieved 88.68%
accuracy, 86.94% sensitivity, 90.38% specificity, and an F1 score of 0.895. The results
demonstrate superior performance compared to the model with traditional LSTM and
the potential to detect OSA disorders by ECG signals. The model is also particularly
beneficial for applications in home health monitoring.
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INTRODUCTION

Obstructive sleep apnea (OSA) is a condition involving repeated upper
airway obstructions, either partial or complete, that occur while sleeping
(Eckert and Malhotra, 2008). but the symptoms are often subtle and
not easily recognizable (Ghassemi et al., 2018). Electrocardiogram (ECG)
is a standardized procedure to diagnose OSA, which is a low-cost, non-
invasive procedure corresponding to the heart’s electrical activity. Because
OSA causes cyclical changes in some characteristics, ECG signals capture
the subtle differences between heart rate variability (HRV) and RR interval
(RRI). However, ECG signals are noisy and exhibit significant variability
in symptoms among individuals, making it difficult to detect the electrical
abnormalities of OSA. Some studies have focused on extracting features such
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as frequency bands from power distribution (Babaeizadeh, 2010) or Q, R,
and S waves from the QRS complex (Sharma and Sharma, 2016). Although
these features can provide more distinctive patterns for artificial intelligence
(AI) models, detecting OSA remains challenging, largely due to the high costs
involved in current diagnostic methods with data collection and the diverse
range of symptoms exhibited by individuals.
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Figure 1: Example of specific difference between four severities in ECG.

However, ECG signals are typical time-series data, characterized by
high temporal dependency and non-stationary features. This means that
the features of ECG signals are not limited to individual time points
but are closely related to the dynamic changes in the signal over time.
Therefore, when analysing and processing ECG data, extracting and
modeling temporal features is crucial. Based on this idea, Shoeb and Sridhar
(2018) employed a hybrid model combining Long Short-Term Memory
(LSTM) with Convolutional Neural Network (CNN) to capture latent
temporal features in multiple physiological signals.

Bi-directional LSTM (Bi-LSTM) is a bi-directional recurrent neural
network that extends LSTM by processing temporal data in both
directions (Schuster and Paliwal, 1997). While LSTM processes information
sequentially from past time steps, Bi-LSTM processes data in both
the forward (signal front-to-back) and backward (signal back-to-front)
directions, capturing more contextual dependencies and extracting richer
features from the data.

Our study takes into account the temporal features embedded in ECG
signals and accordingly combines Bi-LSTM with CNNs as our model.
The proposed model has been validated in detecting OSA disorders,
demonstrating its effectiveness in capturing the ECG signal’s spatial and
temporal characteristics. This hybrid model enhances the accuracy and
reliability of OSA diagnosis, providing a more comprehensive approach
compared to traditional methods, by ensuring computational efficiency, this
method is also ideal for real-time applications.
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Database and Preprocessing

We used the ECG dataset of the PSG-Audio dataset, which was
simultaneously recorded with others by the given protocols at the
Sismanoglio-Amalia Fleming General Hospital of Athen for the apnea
study (Korompili et al., 2021). According to the protocols, 278 subjects
participated in the study, which took approximately 5 hours per subject to
record. The distribution of the disease severity was regarded as three based on
the apnea-hypopnea index (AHI), guided by the National Institutes of Health
(NIH) for OSA: mild, moderate, and severe, the differences are illustrated in
Figure 1.

For the experiments, we excluded five duplicated records from the dataset,
based on the lowest number of individuals at each severity level by gender, we
selected a balanced sample of 72 subjects from a total dataset of 273 subjects,
representing both genders and each severity level.

For segmentation, first we resampled the original 72 ECG records into
200 Hz. then we take the median of the OSA event with a duration greater
than 20 seconds as the center to intercept samples with a length of 30 seconds
and keep the original label unchanged. The normal samples are extracted as
the same length of 30 seconds, same as apnea samples. 2382 samples were
extracted, 1667 for training, and 715 for testing.

For noise removal, very high frequencies were removed using low-pass
filters with cutoffs of 30 Hz, while very low frequencies were removed using
high-pass filters with a cutoff frequency of 0.5 Hz (Zhou et al., 2020). The
notch interference is filtered out from the ECG signal based on a frequency
of 50 Hz (Charlton et al., 2016).

We employed Empirical Mode Decomposition (EMD) to process ECG, an
adaptive decomposition method that can decompose a signal into several
Intrinsic Mode Functions (IMFs) and a residual (Kwon and Kang, 2022).
After the complex ECG signals are decomposed, the various frequency
components and features for additional ECG processing will be extracted
more effectively. The difference between the preprocessed signal and the
original data is shown in Figure 2.

After the dimension reduction. The global standardization was applied to
standardize all ECG samples, it differs from local standardization in that
it uses the mean and standard deviation of the entire dataset, which were
defined as follows:

X; —
7 = i Hglobal (1)

Oglobal

In this equation, x; is the original data point, ggjop,l is the mean of the
entire dataset, o g,p, is the standard deviation of the entire dataset. After
completing all the steps above, the data for each sample had a length of 6000.

Experiments

In this work, we proposed a network with five convolutional layers and
one Bi-LSTM layer, followed by three fully connected layers to classify
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OSA from normal. The model is implemented with the following parameter
configuration:

A stack of 1D CNNs with 32, 64,128,256, and 512 units. All convolution
kernels’ sizes were set to 3, to capture local features effectively.

Each CNN layer is followed by batch normalization, which reduces
the internal deviation of variable distributions and accelerates model
convergence. The Rectified Linear Unit (ReLU) activation function is
applied, which resolves the vanishing gradient problem and has a faster
computation speed compared to sigmoid and tanh. Additionally, a max
pooling process with a pool size of 2 is utilized to extract important
features from the previous layer’s output.
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Figure 2: Comparison of ECG signals before and after empirical mode decomposition.

After the five CNNs, the Bi-LSTM layer with 128 units is employed,
followed by three dense layers with units of 128, 64, and 1. The final
layer is used to classify and compute the probability for the normal and
OSA categories.

A dropout rate of 0.2 is applied after each CNN layer and the second dense
layer. The dropout mechanism helps prevent overfitting during training.
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The full architecture is shown in Figure 3. In the experiment, we used 715
pieces of samples in a test set to evaluate the performance of the Bi-LSTM
and CNNs combined model. To optimize model performance, an adaptive
learning rate was employed. Specifically, we monitor the validation loss and
decrease the learning rate to 50% of its previous value if there is no progress
in the validation loss for five consecutive epochs. The binary cross-entropy
function was adopted with a batch size of 64, and the Adam optimizer was
used.
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Figure 3: Architecture of the network.
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Figure 4: Distributions of validation scores for the proposed model and LSTM-CNN
model.

As illustrated in Figure 4, the method we proposed achieved the
performance with 88.68% accuracy, 86.94% sensitivity, 90.38% specificity,
and a 0.895 F1 score. The overall performance of our proposed model

is better than that of the LSTM-CNNs combined method. Based on the
results, we conclude that this method effectively detects apnea from normal.
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Compared to the LSTM-CNNs combined model, our model with Bi-LSTM
enhances the model’s performance and feature representation capabilities by
simultaneously processing input sequences from past and future directions,
allowing for better capture of contextual information. Compared to standard
LSTM, Bi-LSTM exhibits superior performance in handling long-term
dependencies and varying sequence lengths.

CONCLUSION

Our proposed model effectively integrates Bi-LSTM and CNN architectures
to leverage the temporal features inherent in ECG signals. The model has
proven to be highly effective and demonstrates great potential in detecting
OSA symptoms from ECG signals. The model’s architecture prioritizes the
extraction of critical features making it suitable for real-time applications,
which cannot be ignored in healthcare monitoring. Future studies will aim
to enhance the performance of the model through further optimization such
as utilizing the Bi-LSTM to extract more effective temporal features, while
maintaining an optimized model complexity for practical use in real-time
monitoring.
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