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ABSTRACT

Remote photoplethysmography (rPPG) emerges as a non-invasive alternative for
pulse and pulse rate variability (PRV) measurement, eliminating the need for direct
skin contact. This approach is particularly suitable for applications where wearable
sensors are impractical, such as the automotive sector, where accurate and robust
PRV monitoring is essential to enhance driver safety by providing real-time insights.
This study evaluates the accuracy and robustness of rPPG signal extraction using
the Freyja/IBV-Dataset, which comprises 73 participants with diverse intrinsic factors,
such as age, body mass index (BMI), and skin phototypes, as well as extrinsic
conditions, including varying lighting and distances. Seven rPPG algorithms (GREEN,
POS, CHROM, ICA, FastICA, PVB, and LGI), selected for their established efficacy in
handling environmental variations, were compared against electrocardiogram (ECG)
as the reference standard. The findings reveal that the mean normal-to-normal interval
(meanNNI) demonstrates the greatest robustness when estimated using ICA and
FastICA, which achieved consistently low mean absolute errors (MAE) even under
challenging conditions such as reduced lighting and increased distance. However,
the estimation of the standard deviation of normal-to-normal intervals (SDNN), a
parameter sensitive to noise and environmental conditions, showed higher errors.
These discrepancies are attributed to intrinsic differences between mechanical (rPPG)
and electrical (ECG) signals, disparities in sampling frequencies between devices,
and environmental influences. This study highlights the need to optimize rPPG signal
extraction and processing techniques to improve the accuracy and robustness of PRV
parameter estimation. Future research should focus on increasing the image sampling
rate, exploring PPG measurements closer to the face, and employing advanced
artificial intelligence (AI) methods to adapt algorithms for challenging conditions, such
as diverse skin phototypes and complex environmental settings.
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INTRODUCTION

Monitoring the physiological state of drivers in real-world automotive
environments is important to enhance road safety and improve driving
performance. Among various physiological markers, pulse rate variability
(PRV) has emerged as a critical indicator for assessing stress, fatigue,
and cognitive load behind the wheel (Burlacu et al., 2021). Traditional
photoplethysmography (PPG) methods, although reliable, rely on contact-
based sensors that can be impractical in real-world automotive environments.

Remote photoplethysmography (rPPG) provides a promising alternative
by leveraging standard video cameras to extract pulse-related signals from
subtle colour variations in the driver’s skin. Unlike contact-based sensors,
rPPG enables fully non-invasive PRV measurement, offering a more natural
and seamless integration into automotive systems. However, the viability
of using unsupervised rPPG algorithms for PRV estimation under dynamic
conditions—such as variable lighting, driver movement, and skin tone
diversity—remains largely unexplored.

Current approaches to rPPG generally fall into two main categories:
unsupervised (non-learning-based) methodologies that apply well-established
signal processing and computer vision techniques, and deep learning-based
methods that rely on large annotated datasets. While these strategies have
shown promise in controlled environments, their performance often degrades
under the dynamic conditions encountered in actual driving scenarios
(Wang et al., 2024).

To our knowledge, this study is the first to systematically compare
PRV parameters across multiple unsupervised rPPG algorithms, including
GREEN, POS, CHROM, ICA, FastICA, PVB, and LGI. These methods were
selected based on their prevalence in the literature and their capacity to handle
environmental and demographic variations. Using the newly developed
Freyja/IBV-Dataset, which encompasses diverse age groups, BMI ranges, and
skin phototypes, we assess the performance of these algorithms in estimating
PRV parameters under realistic conditions.

This investigation aims to evaluate the feasibility of unsupervised rPPG
algorithms for accurate PRV estimation, providing critical insights into
their robustness and reliability in real-world scenarios. By highlighting the
strengths and limitations of these methods, this study contributes to the
foundation for developing more effective and practical driver monitoring
systems.

MATERIALS AND METHODS

Data Collection

A new dataset (Freyja/IBV-Dataset) of 73 subjects (35 females and 38 males)
with ages ranging from 18 to 85, covering the 6 skin phototypes according
to the Fitzpatrick scale (Sachdeva, 2009), and BMI ranging from 15 to 40,
was acquired.
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Figure 1: Sample of the Freyja/IBV-Dataset, illustrating diversity in skin phototypes (top
row) and hand features (bottom row).

In order to determine the sample size, specific ranges have been defined for
each of the intrinsic subject factors (Table 1) and all possible combinations
have been covered. The sample is balanced in terms of age and sex,
while the distributions for BMI and phototypes follow a normal (Gaussian)
distribution.

Table 1. Participant distribution by gender, age, BMI, and Fitzpatrick phototype, with
percentages relative to the total sample.

Factor Subgroup N (%)

Gender Female 35 47.9
Male 38 52.1

Age 18–50 39 53.4
51–85 34 46.6

BMI <21 11 15.1
21–29 42 57.5
>29 20 27.4

Fitzpatrick phototype I-II 20 27.4
III- IV 37 50.7
V-VI 16 21.9

Four measurements were taken modifying the distance between the subject
and the equipment (1 m and 2 m) and the entrance of natural light (presence
or absence of natural light). The subject remained seated and instrumented
throughout the sessions. The forehead, face and lower neck were exposed
to the cameras. Prior to each measurement, the ambient light condition
was recorded using a luxmeter. Subjects were required to remain still and
quiet, breathing normally. They also had to raise their hands to the level
of their heads with the right palm facing forward, as shown in Figure 1.
At the beginning and at the end of each recording, systolic and diastolic
blood pressure were measured with the Withings BPM Connect WPM05
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digital sphygmomanometer. SpO2wasmeasured withWristOx2Model 3150
wrist-worn pulse oximeter.

During each recording session, two cameras, one RGB and one NIR,
were used to capture images synchronously with a resolution of 1920x1080
pixels at a sampling rate of 60 Hz and 15 Hz, respectively. Image capture
was synchronised with the acquisition of electrocardiogram (ECG) and
respiration signals. For this purpose, the BiosignalsPlux (PLUX Biosignals,
n. d.) acquisition system was used together with a respiratory band and ECG
sensors disposed in the Lead I. Throughout the recording, a 640 nm laser
with a dot pattern (classified as eye-safe, RPPES, class 1M) was activated. To
capture this pattern, the NIR camera was equipped with an optical filter of
the same wavelength.

The procedure described in this work is part of the initiative registered on
ClinicalTrials.gov under the ID NCT05947721. The experimental protocol
was approved by the ethics committee of the Universitat Politècnica de
València (UPV) P01_25-05-2022, and all participants signed an informed
consent for the execution of the trial and use of their data.

rPPG Signal Extraction

Extracting the RGB signal is the preliminary step before applying algorithms
designed to derive the rPPG signal. For each captured image, the FaceMesh
segmenter (Grishchenko et al., 2020) was employed to accurately identify and
segment the facial skin regions. Themean pixel values within these segmented
areas were calculated to generate the RGB input required for subsequent
analysis by rPPG algorithms. Each of the RGB channels was further processed
to remove baseline trends using the detrend function from SciPy (Virtanen
et al., 2020).

To evaluate the quality and performance of rPPG signal extraction, seven
unsupervised methodologies were applied: GREEN (Verkruysse et al., 2008),
POS (Wang et al., 2017), ICA (Poh et al., 2011), FastICA (Hyvärinen &
Oja, 1997), CHROM (de Haan & Jeanne, 2013), LGI (Pilz et al., 2018),
and PVB (Haan & Leest, 2014). These algorithms were selected based on
their proven applicability in previous studies and their capacity to handle
variations in illumination, motion artifacts or skin tone differences. All
implementations were performed using the rPPG-Toolbox (Liu et al., 2023),
a standardized open-source framework designed for the comparative analysis
of rPPG techniques. The key principles underlying each of these algorithms
are summarized in Table 2, which provides a detailed description of their
mechanisms and computational approaches.

Table 2. Description of the unsupervised rPPG signal extraction algorithms.

Algorithm Principle

GREEN Exploits green channel intensity variations for rPPG signal extraction.
POS Plane-orthogonal-to-skin (POS) algorithm that finds pulsatile signals

in an RGB normalized space orthogonal to the skin tone.
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Table 2. Continued

Algorithm Principle

CHROM Chrominance-based method (CHROM) to separate the specular
reflection component from the diffuse reflection component, which
contains pulsatile physiological signals, both reflected from the skin
and based on the dichromatic reflection model.

ICA Independent Component Analysis (ICA) to uncover the independent
source signals.

FastICA An optimized version of ICA that employs iterative fixed-point
algorithms to extract independent components efficiently, reducing
computational complexity while maintaining signal integrity.

PVB Pixel Variance Balancing (PVB) algorithm emphasizes balancing the
variance of pixel intensities across consecutive frames, mitigating
motion artifacts and ensuring more stable rPPG signal extraction.

LGI Local Group Invariance (LGI) method, a stochastic representation of
the pulse signal based on a model that leverages the local invariance
of the heart rate as a quasi-periodical process dynamics and obtained
by recursive inference to remove extrinsic factors such as head
motion and lightness variations.

Signal Refinement and IBIs Extraction

A fourth-order Chebyshev Type II bandpass filter was applied to enhance
the quality of the rPPG signal and ensure reliable RR interval extraction.
The filter’s cut-off frequencies were set at 0.33 Hz (20 beats per minute,
bpm) and 4 Hz (240 bpm), covering the physiological range of human
heart rates. Filtering was performed after the RGB-to-rPPG transformation,
following recommendations in the literature that emphasize the benefits of
post-transformation filtering for improving signal clarity and reducing noise
(Guler et al., 2023).

The rPPG signal is processed to extract inter-beat intervals (IBIs) by
identifying systolic peaks corresponding to each pulse. This process employs
a specialized function that detects relative maxima in the signal, which are
determined by comparing each point with its neighbours within defined
segments. An adjustable quality criterion, based on the maximum tolerable
error relative to the original signal, is applied to validate the detectedmaxima.
This ensures that the identified peaks faithfully represent the underlying rPPG
signal. To further enhance robustness, the function operates within a sliding
window of 10 seconds, reducing the impact of high-amplitude outliers that
could mask true systolic peaks.

To ensure the physiological plausibility of the extracted IBIs, outliers
corresponding to heart rates outside the physiological range (30–200 beats
per minute) were first removed, eliminating implausible intervals prior to
further analysis. Subsequently, an iterative filtering approach was applied
to refine the detected peaks and validate the remaining intervals. This
process dynamically adjusted the acceptable range for IBIs based on the
mean and standard deviation of the most recent valid intervals, enabling
the identification and correction of aberrant intervals. Intervals exceeding
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the upper or lower bounds were excluded from the analysis, and the process
continued iteratively until all remaining intervals fell within the predefined
range. Linear interpolation was then used to reconstruct a continuous IBI
sequence.

The ground truth IBI sequences were derived from the synchronously
recorded ECG signals, which were pre-processed using the Pan-Tompkins
algorithm (Pan & Tompkins, 1985). This method enhances QRS complexes
while suppressing noise, baseline wander, and high-frequency artifacts,
ensuring accurate identification of R peaks. The same peak detection
algorithm applied to the rPPG signal was used for the filtered ECG signal.

The resulting IBIs sequences were further refined through the same iterative
dynamic filtering approach was applied to the rPPG-derived IBIs to refine the
sequence by excluding implausible intervals and ensuring that all remaining
intervals fell within the predefined range, thereby maintaining consistency
between the ground truth and the rPPG-derived IBIs.

PRV Parameters, Evaluation Metrics and Results

This study concentrated on time-domain PRV parameters due to their proven
reliability in short-term recordings (Shaffer et al., 2020). Frequency-domain
and non-linear parameters were excluded because of their susceptibility to
noise and their limited applicability to short recording segments. Among
the time-domain parameters, we selected the two most informative indices
of PRV—Mean of Normal-to-Normal Intervals (meanNNI) and Standard
Deviation of Normal-to-Normal Intervals (SDNN)—as they are considered
robust metrics. These measures provide a comprehensive understanding of
both the central tendency and variability of heart rate dynamics, making them
particularly well-suited for the study’s emphasis on short-term recordings.

To ensure the quality and reliability of the rPPG signals analysed in this
study, specific criteria were established to exclude recordings with insufficient
signal quality or excessive artifacts. Recordings were excluded if the number
of detected peaks in the rPPG signal differed by more than 20% from the
corresponding ground truth ECG signal or if more than 40% of the detected
peaks in the signal are removed after iterative filtering of the IBI vector.
Table 3 presents the percentage of recordings excluded under these conditions
for each algorithm and experimental setup.

Table 3. Percentages of excluded recordings out of the total in the demographic and
experimental subgroups. For each subgroup, the best result is highlighted in
bold.

Factor Subgroup % Excluded Records

GREEN POS CHROM ICA FastICA PVB LGI

Gender Female 7 24 37 9 8 28 40
Male 11 37 52 9 11 20 38

Age 18–50 12 36 46 12 13 28 39
51–85 5 23 43 6 5 19 39
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Table 3. Continued

Factor Subgroup % Excluded Records

GREEN POS CHROM ICA FastICA PVB LGI

BMI <21 3 24 43 3 5 16 38
21–29 9 32 44 9 8 23 42
>29 13 29 46 13 14 30 33

Fitzpatrick
phototype

I-II 6 21 35 6 9 17 27
III- IV 2 27 48 3 3 24 37
V-VI 28 47 47 25 24 33 56

Lighting Good 7 20 34 6 7 10 37
Low 11 40 55 12 12 39 41

Distance 1 meter 8 29 39 7 9 22 37
2 meters 10 31 50 11 10 26 41

Mean Absolute Error (MAE) was calculated for each algorithm across
varying environmental conditions as well as for each demographic subgroup.
These MAE values are summarized in Table 4 for meanNNI values and
in Table 5 for SDNN values, providing a comprehensive overview of
performance across groups. To further analyse variations in MAE, non-
parametric statistical tests were conducted: the Kruskal-Wallis (Kruskal &
Wallis, 1952) test was employed for categories with more than two levels due
to its robustness for non-normally distributed data, and the Mann-Whitney
U test (Mann & Whitney, 1947) was used for pairwise comparisons where
normality could not be assumed. Dunn’s post hoc (Dunn, 1964) tests were
performed when statistically significant differences (p < 0.05) were identified,
allowing for the determination of specific group differences. Type I statistical
error was taken into account to ensure the robustness of the findings using
Bonferroni correction for multiple comparisons.

Table 4. MAE of meanNNI across demographic and environmental subgroups, with
statistically significant differences (p < 0.05) marked with an asterisk. For each
subgroup within each factor, the best result is highlighted in bold.

Factor Subgroup MAE meanNNI (ms)

GREEN POS CHROM ICA FastICA PVB LGI

Gender Female 24 74 77 16 25 59 47
Male 16 66 51 10 14 57 37

Age 18–50 24* 62 55 16 20 62 45
51–85 15* 77 70 9 19 52 39

BMI <21 24 79 48 9 15* 57 49
21–29 18* 73 70 16* 26* 56 44
>29 13* 56 52 8* 8* 49 33

Fitzpatrick
phototype

I-II 16* 67 50 10* 15 62 45
III- IV 16* 80* 73 8* 14* 51 38
V-VI 38* 43* 56 30* 42* 69 49

Lighting Good 17 56 60 9 16 50 25
Low 23 88 65 16 23 66 67

Distance 1 meter 21 66 59 12 16 58 36
2 meters 18 73 65 14 24 57 48
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Table 5. MAE for SDNN across demographic and environmental subgroups, with
statistically significant differences (p < 0.05) marked with an asterisk. For each
subgroup within each factor, the best result is highlighted in bold.

Factor Subgroup MAE SDNN (ms)

GREEN POS CHROM ICA FastICA PVB LGI

Gender Female 106 207 224 79 94 187 160
Male 96 196 194 71 90 217 153

Age 18–50 114* 195 191* 87* 99* 213 164
51–85 87* 207 226* 61* 83* 188 149

BMI <21 112* 199 182 73* 95* 233 169
21–29 107* 205* 220 82* 101* 205 161
>29 81* 195* 194 62* 68* 181 137

Fitzpatrick
phototype

I-II 93* 206 200 69 84* 216 160
III- IV 90* 207* 219 64* 87* 191 147
V-VI 145* 176* 192 113* 116* 209 176

Lighting Good 92 184 204 70 82 187 108
Low 110 224 212 80 101 218 228

Distance 1 meter 99 200 205 71 89 203 129
2 meters 103 202 210 79 95 200 186

In the case of meanNNI, GREEN, ICA, and FastICA stood out for
their higher consistency, showing lower MAE across nearly all subgroups
and maintaining a low percentage of excluded recordings. In particular,
ICA demonstrated remarkable robustness against variations in distance and
lighting conditions. In contrast, POS, CHROM, PVB, and LGI exhibited
significant increases inMAE, as well as a higher number of excluded segments
under poor lighting conditions, reflecting greater vulnerability to signal
quality degradation.

The evaluated camera distance did not produce significant changes in the
performance of most algorithms, except for CHROM, which experienced
a notable increase in the percentage of excluded recordings. Regarding
demographic variables such as gender and age, the detected statistical
differences did not translate into substantial MAE increases compared to
other algorithms, with discrepancies more attributable to the percentage of
excluded segments.

Statistical analysis revealed significant differences (p < 0.05) in the
meanNNI parameter between certain demographic subgroups. Specifically,
significant differences were observed between subjects with phototypes I-II or
III-IV and those with phototypes V-VI. Additionally, the generalized increase
in MAE and the higher percentage of excluded recordings in individuals with
darker phototypes highlight the need to develop algorithms that adapt to
variations in skin pigmentation. Although the CHROM and PVB algorithms
did not present significant differences between these subgroups, their MAE
and percentage of excluded recordings were higher compared to other
algorithms. Furthermore, the analysis of groups based on BMI showed
significant differences in the FastICA, ICA, and GREEN algorithms; however,
the differences inMAE between the groups were not particularly pronounced.
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In the SDNN analysis, ICA, FastICA, and GREEN again demonstrated
better performance, with lower MAE values and greater stability against
environmental and demographic changes. However, overall errors were
higher than those recorded for meanNNI, indicating that the robustness
observed in the first parameter does not always extend to heart rate interval
variability. The significant differences detected in SDNN, although similar
to those of meanNNI, underscore the need to continue refining extraction
methods to improve their performance under challenging conditions.

CONCLUSION

This study evaluated the accuracy and robustness of rPPG signal extraction,
considering both intrinsic factors related to the subjects, such as gender,
age, BMI and skin phototype, and extrinsic factors, such as lighting and
device distance, which can influence the results. Although no single algorithm
was identified as optimal for all conditions, ICA and FastICA stood out for
their robustness, exhibiting the lowest and most consistent mean absolute
errors (MAE), especially in the meanNNI parameter, even in unfavorable
lighting and distance contexts. These results highlight the potential of these
algorithms for applications such as driving monitoring and other areas
requiring reliable estimation of average heart intervals.

However, the estimation of SDNN, which measures heart interval
variability, proved to be more affected by noise and experimental conditions,
showing higher MAE compared to meanNNI. This difference can be
attributed to various factors, such as the dissimilar nature of ECG (electrical)
and rPPG (mechanical) signals, disparities in sampling frequencies between
contact devices and cameras, signal quality, and environmental influences.
These combined factors complicate the precise estimation of non-averaged
parameters like SDNN, highlighting the need for further optimization of
rPPG algorithms to enhance their accuracy under diverse conditions.

Limitations and Future Research Directions

The main limitations identified in this study include the inherent differences
between ECG (electrical) and rPPG (mechanical) signals, as well as the
low sampling frequency of images, which particularly affect the precision
of the SDNN parameter. Future studies should prioritize increasing the
image sampling frequency to better capture signal fluctuations and reduce
sampling errors. Additionally, comparing rPPG with PPG signals obtained
from areas near the face could help minimize divergences between electrical
and mechanical signals.

Additionally, the use of more advanced Artificial Intelligence (AI) models
could significantly improve signal extraction by increasing robustness against
complex environmental factors and optimizing precision in challenging
parameters such as SDNN.This represents a key opportunity to developmore
adaptive algorithms applicable in challenging biometric and clinical contexts.
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