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ABSTRACT

Work-skipping methods accelerate neural network training by selectively skipping
work that is deemed not to contribute significantly to learning. The goal of such
methods is to reduce training time while incurring little or negligible reduction in
output accuracy. We identify a “blind-spot” in current best-practice methodologies
used to evaluate the effectiveness of work-skipping methods. Current methodologies
fail to establish objective ways of determining whether a time reduction vs. accuracy
drop trade-off is indeed beneficial. We propose a set of guidelines for evaluating
the effectiveness of workload skipping techniques. Our guidelines emphasize the
importance of using wall clock time, comparing with random skipping baselines,
incorporating early stopping or time-to-accuracy measures, and utilizing Pareto
curves. By providing a structured framework, we aim to assist practitioners in
accurately determining the true speed advantages of training acceleration algorithms
that involve workload skipping. To illustrate the appropriateness of our guidelines
we study two work-skipping methods: GSkip, which skips complete layer’s gradient
computations and weight updates based on their relative changes, and DeadHorse,
which selects data samples for backpropagation according to output confidence. We
demonstrate how our methodology can establish when these methods are indeed
beneficial. We find that on many occasions, random skipping, early termination, or
hyperparameter tuning may be as effective if not more.

Keywords:Neural network training acceleration, Workload-skipping, Gradient skipping, Sample
skipping, Performance evaluation

INTRODUCTION

Training deep neural networks is computationally and memory-intensive,
often requiring extensive data processing. As these models evolve, their
increasing demands create bottlenecks in both research and applications,
motivating efforts to reduce training costs in computation, memory, and
ultimately time (Thompson et al., 2020).

Training proceeds incrementally across layers, batches, epochs, and
individual samples. This naturally prompts the question of whether every
single step is necessary for achieving high performance—leading to the
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emergence of work-skipping algorithms (Shen et al., 2023). These methods
selectively omit parts of the workload considered non-essential, thereby
reducing computational overheadwithout substantially compromisingmodel
accuracy (Coquelin et al., 2022).

The main contribution of this work is introducing an evaluation
methodology to assess the effectiveness of such training accelerationmethods.
Our methodology addresses pitfalls in prior evaluations, ensuring that
claimed efficiency improvements are thoroughly vetted under various
conditions. This structured framework sets reliable benchmarks, crucial for
evaluating the practical value of workload-skipping algorithms in real-world
applications.

We illustrate the usefulness of our methodology by presenting two new
work-skipping methods, GSkip and DeadHorse. GSkip selectively skips
gradient updates for layers deemed to have minimal impact based on
gradient similarity and loss stability, while DeadHorse omits updates from
samples that offer limited informational value. Although initial experiments
indicated promising speedups with minor accuracy trade-offs, we found that
existing evaluations relied on subjective judgments of what constitutes an
“acceptable” accuracy drop. By introducing control experiments such as
random skipping and early stopping, we discovered that simpler strategies
can often match or even surpass the performance of these advanced skipping
methods. These findings emphasize the need for robust baselines and
objective metrics when assessing workload-skipping algorithms.

BACKGROUND

Neural Network Training and Costs

Neural network training is a trial-and-error process that optimizes a loss
function to improve model performance. It involves two core phases:
the forward pass, which multiplies inputs by learned weights and stores
activations, and the backward pass, which computes gradients and updates
the weights. Because it repeats these cycles across many samples and
epochs, training is significantly more resource-intensive than inference, often
requiring around 70% more computations and substantial off-chip memory
transfers (Goli & Aamodt, 2020).

During the forward pass, the network produces outputs that must
be cached for gradient calculations in the subsequent backward pass.
The backward pass then compares these outputs to ground truth labels,
computing gradients that guide weight adjustments. Each incremental step
is meant to refine the network’s parameters, but not all updates contribute
equally to the final model accuracy.

Training Acceleration via Work-Skipping

To reduce the heavy computational load of training,work-skipping methods
selectively bypass parts of the training process that are less impactful. By
identifying layers or samples that contribute minimally to learning, these
approaches can eliminate redundant operations and lighten memory usage.
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Such selective skipping leverages the iterative nature of training to focus
resources on critical updates, thereby aiming to accelerate convergence
without incurring unacceptable accuracy losses. However, evaluating the true
benefit of these approaches demands comprehensive comparisons against
simpler baselines and control strategies—a central focus of this paper.

RELATED WORK

Work-Skipping Training Acceleration Methods

MeProp retains only the top-k gradients during the backward pass, achieving
up to 95% gradient sparsity and significant speedups (Sun et al., 2019;
Wei et al., 2017). However, MeProp exhibits training divergence on more
complex tasks.

ResProp accelerates CNN training by reusing sparse gradients, yielding a
2× speedup at the cost of about 1% accuracy reduction (Goli & Aamodt,
2020).

Backprop with Approximate Activations reduces memory footprint by
storing approximate activations, cutting memory usage by up to 8× while
keeping accuracy loss below 0.5% (Chakrabarti & Moseley, 2019).

Weight Update Skipping (WUS) and its variant WUS with Learning
Rate (WUSLR) omit weight updates during periods of minimal accuracy
improvement, focusing only on bias updates (Safayenikoo & Akturk, 2020).
They reduce training time by over 50%on certain benchmarks, with accuracy
drops below 1% in many cases.

Collectively, these methods demonstrate the potential of selective skipping
to accelerate training. Yet each approach involves some trade-off, typically
sacrificing a fraction of accuracy for computational gains. Evaluations
often rely on subjective judgment to deem these trade-offs “acceptable.”
Our proposed methodology addresses this limitation by isolating whether a
method’s intelligence truly outperforms simpler strategies—especially given
that a large portion of training time often yields only marginal gains in
accuracy.

Evaluation Methodologies

The AlgoPerf benchmark provides a comprehensive framework for
comparing training algorithms across different neural network architectures
(Dahl et al., 2023). It covers essential challenges: determining when training
should stop, measuring exact training time, and handling variations in
workloads. It also addresses hyperparameter tuning, offering a fair platform
for algorithmic comparisons. Our work builds upon and complements
these excellent guidelines by proposing specific and additional control
experiments that we believe should be conducted for any work-skipping
training acceleration proposal.

LAYER-WISE GRADIENT SKIPPING (GSKIP)

Our first work-skipping method, GSkip, is based on the principle that
not all gradients contribute equally to a model’s learning, particularly in
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earlier layers or in later stages of training. By selectively disabling gradient
computations for layers expected to have minimal impact, GSkip aims to
reduce training time and memory usage without significantly compromising
accuracy. To illustrate why rigorous control experiments are critical, GSkip
initially appeared promising but, as we later show, must be evaluated against
strong baselines.

We analyzed gradient distributions across various networks (ResNet,
DenseNet, MobileNetV2, VGG) and datasets (CIFAR10, CIFAR100,
ImageNet) (He et al., 2016; Krizhevsky et al., 2009; Sandler et al., 2018;
Zhu & Newsam, 2017). Our findings confirm that gradients often cluster
around zero as training progresses. Notably, gradients in layers closer to the
input are generally smaller.

This observation suggested that if a layer’s gradients barely change and
overall loss is stable, skipping the computations for that layer would likely
have negligible impact on accuracy. To operationalize these ideas, GSkip
checks two conditions after each backward pass:

1) High gradient similarity: If the cosine similarity between the current
gradient GPand the previous iteration’s gradient GP

prev exceeds a

threshold spt , GSkip flags that layer’s gradients as potentially skippable.
The threshold sPt =

1
1 + e−0.2×ASC

is maintained by an Adaptive
Saturating Counter (ASC), which adjusts automatically based on recent
gradient similarity patterns.

2) Loss stagnation: GSkip uses an Exponential Moving Average (LEMA)
of the loss to detect if the network’s performance has plateaued.
A configurable threshold lt determines whether each new loss
measurement E indicates stagnation. If the loss is consistently near the
LEMA (i.e., E≈LEMA),GSkip considers the network’s learning progress
marginal.

When both conditions are met, GSkip skips updating the gradient for
that layer and all preceding layers in the subsequent iteration, imposing
a “waterfall” skip that can significantly reduce redundant computations.
Otherwise, it proceeds with standard gradient calculations. GSkip begins
with a warm-up phase of full training—allowing the network to stabilize—
then adjusts behavior using a Skip-History of recent decisions. If the network
has not skipped for multiple steps, GSkip loosens its similarity threshold
to encourage skipping; if it has skipped recently, it tightens the threshold,
ensuring that only highly similar gradients are repeatedly bypassed. After
each epoch, GSkip reviews whether the loss has degraded or improved. A
degraded or stagnant loss prompts more conservative skipping (tightening
lt and resetting ASC), while an improving loss allows for more skipping
(relaxing lt). GSkip also continuously rechecks skipped layers; if conditions
no longer justify skipping, those layers are reactivated.

By inhibiting gradient calculations and activation storage for less impactful
layers, GSkip cuts down on memory transfers and computational overhead.
Although it adds minor history-keeping costs (maintaining past gradients,
counters, and the LEMA), these are typically outweighed by the savings in
both time and resources.
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EXPERIMENTAL SETUP AND INITIAL RESULTS

GSkip was implemented in Python, integrated with PyTorch v1.13, and
tested on a NVIDIA RTX 3090 GPU with CUDA 11.7 (Paszke et al., 2019).
We conducted experiments on ResNet18, ResNet50, DenseNet121, and
MobileNetV2 with the CIFAR10 and CIFAR100 datasets, as well as on
the ImageNet dataset with ResNet18. For CIFAR10 and CIFAR100, we
employed Stochastic Gradient Descent (SGD) with momentum 0.9, weight
decay of 0.0001, and an initial learning rate of 0.1, across 200 epochs with
a batch size of 128. For ImageNet, we trained for 90 epochs, reducing
the learning rate by a factor of 10 at epochs 0, 30, and 60, with a batch
size of 256. GSkip was configured to consider the past four network losses,
using a threshold lt = 0.00005 and a burn-in period of 750 steps.

Figure 1: Training vs. validation accuracy for ResNet18 on CIFAR10 with GSkip and
standard training.

Figure 2: Average memory footprint for ResNet18 on CIFAR10 with GSkip and standard
training.

Our evaluation began with ResNet18 on CIFAR10, to see whether
GSkip could effectively identify and skip non-critical updates in earlier
layers. Figure 1 compares top-1 training (“Train”) and validation (“Test”)
accuracies between standard (baseline) and GSkip-enabled training (Gskip).
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GSkip achieves a test accuracy of 94.7%, just a 0.7% drop from the baseline’s
95.4%,while skipping 28.84%of gradient computations (i.e., the proportion
of skipped updates relative to the total). Figure 2 shows that GSkip reduces
memory footprint by approximately 1.67×, with the savings becoming more
pronounced in later stages of training.

Evaluation of GSkip Across Datasets and Networks

Effect on CIFAR10: Table 1 summarizes results for ResNet18, ResNet50,
DenseNet121, and MobileNetV2 on CIFAR10. GSkip attains similar
validation accuracies, sometimes with minor degradation (up to –0.75%) for
ResNet50 and MobileNetV2, or even a slight improvement (+0.55%) for
DenseNet121. Memory footprint reductions average around 1.5×, and skip
rates remain above 24%.

Effect on CIFAR100: On the more challenging CIFAR100 dataset, GSkip
maintains accuracy within about 1% of the baseline, occasionally surpassing
it (e.g., DenseNet121, MobileNetV2) as shown in Table 1. Memory usage
drops by around 1.29×, reflecting gradient skipping rates of at least 19.4%.

Table 1. Training statistics for CIFAR10 and CIFAR100.

CIFAR10 CIFAR100

CNN Std GSkip Std GSkip

Acc. Acc. Mem. Skip Acc. Acc. Mem. Skip
% % Dec. Rate % % % Dec. Rate %

ResNet18 95.41 94.7 1.45× 28.84 75.6 74.82 1.26 24.21
ResNet50 94.68 95.23 1.51× 35.47 76.64 75.28 1.36 29.74
DenseNet-121 95.67 94.92 1.7× 42.551 79.14 79.34 1.37 30.17
MobileNet-V2 92.63 92.94 1.36× 24.344 71.78 71.88 1.15 19.4

Effect on ImageNet: For ImageNet, we evaluated ResNet18 training.
GSkip maintained a final accuracy of 69.13% compared to the baseline’s
69.87%, skipping 16.1% of gradients and reducing memory usage by 1.18×.
Figure 3 illustrates these findings, demonstrating GSkip’s potential to lower
computational overhead on larger-scale tasks while preserving most of the
accuracy.

Figure 3: Training vs. validation accuracy for ResNet18 on ImageNet with GSkip and
standard training.
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Overall, these findings indicate GSkip’s potential, guiding further
investigation into its capabilities and limitations.

Control Experiments

At this point, a standard evaluation would have declared GSkip a
moderate success. However, we questioned whether these experiments truly
demonstrated the “intelligence”of GSkip’s decisions or if simpler approaches
could achieve similar effort reductions given the observed accuracy drop. We
also investigated how training time correlates with accuracy improvements,
providing insights into the real efficiency of work-skipping methods like
GSkip. We settled on two control experiments:

1) Random Skipping: Mini-batches were omitted at random, without
regard for their potential impact on training accuracy. We set the
skipping rate to mirror GSkip’s proportion of skipped workload,
noting that backpropagation typically consumes about two-thirds of
the computational load (Hobbhahn & Sevilla, 2021). For example, on
CIFAR100 with ResNet18, we applied a 14% random skipping rate,
approximating GSkip’s average.

Table 2 compares final accuracies for GSkip and random skipping under
the same amount of skipped workload. Surprisingly, ResNet18 achieved
75.15% accuracy using random skipping, slightly outperforming GSkip’s
74.82%. Similar trends were observed for ResNet50 and MobileNetV2,
while GSkip only outperformed both random skipping and standard training
on DenseNet-121.

2) Early Termination: We measured “time to accuracy” rather than
focusing solely on final accuracy. Deep learning models often exhibit
diminishing returns on accuracy gains in later epochs (Yarally et al.,
2023). For instance, halting baseline training of ResNet18 on ImageNet
at epoch 64 achieved 69.13% accuracy—identical to GSkip’s final
accuracy after 90 epochs—indicating that 26 additional epochs yielded
just a 0.75% boost over baseline training.

Table 2. Control experiments with CIFAR100.

CNN Baseline/GSkip/Random
Testing % Accuracy

Baseline/GSkip/Random
Workload Ratio %

ResNet18 75.60 / 74.82 / 75.15 100 / 83 / 83
ResNet50 76.64 / 75.28 / 75.76 100 / 80 / 80
DenseNet-121 79.14 / 79.14 / 78.87 100 / 87 / 87
MobileNetV2 71.78 / 71.88 / 72.07 100 / 79 / 79

These findings suggest that the benefits attributed to GSkip and other
methods might have been mischaracterized due to inadequate baseline
comparisons. This underscores the importance of rigorous evaluation
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methodologies, which we will address next by proposing robust evaluation
guidelines.

Evaluation Guidelines

To ensure a fair evaluation of workload skipping techniques, we propose the
following guidelines, which reflect real-world implications of these methods:

1. Comparison with Random Workload Skipping: By omitting a fixed
percentage of batches, layer updates, or samples randomly during
training (including random omission at the sample, batch, step, or
layer level to align with the target method), we can assess objectively
if techniques offer genuine improvements.

2. Incorporation of Early Stopping or Time to Accuracy: Using early
stopping or tracking the time to reach a specified accuracy helps gauge
the effectiveness of a skipping method in accelerating training. Using it,
researchers can determine if the computational savings from skipping
methods are substantial enough to justify their complexity.

3. Utilization of Pareto Curves for Accuracy vs. Time Analysis: Building
on the concept of time to accuracy, Pareto curves illustrate the
trade-off between accuracy and training time across different budgets
and help identify the most efficient balance for various algorithms.
Conventionally, generating these curves requires multiple training runs,
which is resource-intensive. Using multiplicative cyclic learning rates can
construct these curves in a single session (Portes et al., 2022).

4. Wall Clock Time as the Primary Metric: Traditional measures such as
accuracy at a certain epoch count can be misleading because they do not
account for the actual time used during training. Using wall clock time
ensures that reported improvements in computational efficiency reflect
the total training duration to a specified accuracy level.

5. Memory Usage Analysis: Besides reducing training time, effective
algorithms should optimize memory consumption. Evaluations must
consider hardware differences, network architectures, and batch sizes,
but detailed exploration of these factors is outside the scope of this paper.

Applying Guidelines to GSkip

Figure 4 refers to the Pareto curves for CIFAR100 training on ResNet50,
showing validation accuracy versus training time for standard training,
GSkip, and random mini-batch skipping. The dotted lines indicate
polynomial fits, illustrating the Pareto front for each method. While GSkip
reduces training time, its advantage over both standard training and random
skipping is not consistently significant across all accuracy levels. Although
GSkip performs better in certain ranges, these differences are not significant
enough to conclusively assert its effectiveness. This finding underscores the
importance of applying these evaluation guidelines to accurately measure the
benefits of any workload skipping algorithm.
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Figure 4: Pareto curves showing validation accuracy vs. training time for standard
training, GSkip, and random mini-batch skipping on CIFAR100 with ResNet50.

Figure 5: Confidence of prediction during training with ResNet18 on ImageNet.
Correct/incorrect predictions are marked with green/red, with darker shades indicating
higher confidence.

DeadHorse

Typically, each epoch processes every sample in the training dataset, bundling
them into batches to ensure diversity. DeadHorse performs sample skipping,
deciding when to exclude an input sample from an epoch’s processing under
the hypothesis that not all samples require constant revisiting—particularly
if the network consistently succeeds or fails to learn them.

DeadHorse posits that a sample’s prediction confidence can signal its
necessity in the backward pass. High-confidence, correct predictions induce
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minimal parameter updates, while low-confidence ones drive learning.
However, ignoring high-confidence samples risks “unlearning,” disrupting
the balance between well-learned and under-learned samples. Figure 5
illustrates a breakdown of predictions during ResNet18’s full ImageNet
training, with correct samples in green and incorrect ones in red, ordered
by confidence bands from 0.0 to 1.0. The figure shows that as training
progresses, some initially incorrect, low-confidence predictions become
correct, whereas others remain persistently “unlearnable.”

General Approach: DeadHorse uses softmax confidence S and compare
it to a threshold T to decide whether to skip a sample’s backward pass.
Several Reactive and Predictive policies that decide how samples are skipped
were explored. Reactive policies calculate confidence during the forward
pass and selectively skip the backward pass based on this. Predictive policies
potentially skip both the forward and backward passes using historical data.

Figure 6: Deadhorse operations count: skip rate vs. validation accuracy of ResNet18
on ImageNet.

Figure 7: Deadhorse off-chip memory transfers: skip rate vs. validation accuracy of
ResNet18 on ImageNet.

• Reactive Policies: (1) Basic DeadHorse (DH) skips correct, high-
confidence samples. (2) Double-Sided DeadHorse (DDH) relies solely on
confidence level, regardless of correctness. (3) Stochastic Double-Sided
DeadHorse (SDDH) adds randomness to reduce overfitting.
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• Predictive Policies: (1) Historic Stochastic Deadhorse (HSDH) uses
a previous pass’s results to skip correct, high-confidence samples.
(2) Historic Stochastic Double-sided Deadhorse (HSDDH) skips any high-
confidence samples, correct or not. (3) Classy Deadhorse (CDH) focuses
on entire classes that display consistently high confidence across epochs.

Metadata (confidence and correctness) is tracked per sample or class,
depending on the policy. We evaluated DeadHorse on ResNet18/ImageNet
for 90 epochs, adjusting learning rates at epochs 0, 30, and 60, then applied
“time to accuracy” to compare each policy’s speed against the baseline.

DeadHorse’s “intelligence” was also compared against two random-
skipping baselines: Uniform, which randomly skips samples at a fixed rate,
and Non-Uniform, which matches DeadHorse’s average skip probability per
30-epoch segment. Figure 6 shows the operation count for our experiments
and indicates that only a few Stochastic Double-sided DH thresholds (0.8,
0.7, 0.6) and Double-sided DH thresholds (0.8, 0.7) outperform the baseline
slightly. In Figure 7, comparing off-chip memory transfers shows no decisive
advantage for any DeadHorse policy; the marginal gain at threshold 0.8 for
Stochastic Double-sided DH is inconclusive.

All in all, our results show all DH methods fail to outperform the
baseline consistently. Future changes in algorithms, tiling, or trade-offs might
make this approach more relevant. For now, the benefits of DeadHorse are
marginal at best.

CONCLUSION

Our work advances the evaluation of training acceleration methods,
particularly work-skipping techniques. We establish guidelines to assess
whether a work-skipping policy effectively balances accuracy and
acceleration. While training often requires significant effort for small
accuracy gains, it is easy to reduce work with minimal impact on accuracy.
By proposing and evaluating two new work-skipping techniques, we provide
best-practice guidelines for future research. Notably, our GSkip method
reduces work without affecting accuracy.
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