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ABSTRACT

The assessment of footwear insulation in cold environments remains a challenge
due to the lack of standardized evaluation methods beyond the pass/fail criterion
of ISO 20344:2021. To address this gap, this study develops a multi-approach
framework combining experimental measurements, computational simulations,
and machine learning predictions to evaluate thermal protection in cold-weather
footwear. Human trials were conducted in a controlled climatic chamber to examine
thermoregulatory responses under varying environmental conditions, insulation
levels, and activity intensities. To complement these measurements, computational
simulationswere performed to estimate the thermal resistance (RcT) of footwear under
ISO 15831:2004 conditions. Additionally, a Long Short-Term Memory (LSTM) neural
network was trained on experimental data to predict big toe temperature based on skin
temperature, ambient conditions, and activity levels. This integrated approach enables
a more comprehensive evaluation of footwear thermal performance, providing
valuable insights for footwear manufacturers and researchers.
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INTRODUCTION

Cold protection shoes are a complex system. They are made of many different
materials and even in the sports field, they are considered more closely as
personal protective equipment (PPE) rather than casual sportswear. Today,
there is no reliable standard to assess and correctly differentiate between the
various insulation levels of different shoe models. The only existing standard
is ISO 20344:2021 (ISO 20344, 2021), which was developed for work
environments. However, it only relies on a pass/fail criterion, which brings
with it some limitations, such as a deceptive sense of security, a complete lack
of distinction between different levels of insulations, and a lack of evaluation
of protection in practice (Kuklane et al., 2009).

Especially in cold environments, thermoregulation of the extremities
(such as hands and feet) works differently from that of the whole body.
It is affected by mechanisms such as vasoconstriction and cold-induced
vasodilation, which in some extreme cases can lead to severe hypothermia
and frostbite. In the literature, some studies have been carried out to observe
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how thermoregulation works on feet (Bianca et al., 2024; Kuklane, 2009;
Taylor et al., 2014; Zhang et al., 2024) and it has been found that a
crucial condition for feet health that appears at 15 ◦C. In this situation, pain
receptors take precedence over the cold receptors and if this temperature is
maintained for a prolonged period, tissue death may occur.

As it is important to improve the evaluation of the thermal properties of
highly technical footwear (e.g., mountain boots for alpinism and extreme
expeditions) in the sports sector, two parameters have been developed in
this work with the purpose of allowing the manufacturer to more deeply
explore and compare the performance different prototypes in their intended
environmental conditions. The first approach is concerned with predicting
(using a Neural Network, NN) the maximum duration of exposure (in time,
hours) a person could be in the environmental conditions under consideration
when wearing the specified insulation before reaching the 15 ◦C threshold
for the big toe. The second parameter is the estimation of RcT (m2K/W) for
new prototypes of footwear thanks to the development of a CFD model in
which the test conditions of ISO 15831:2004 (Clothing - Physiological effects.
Measurement of thermal insulation by means of a thermal manikin) (ISO
15831, 2004), were reproduced.

METHODOLOGY

Experimental Tests

Human tests were carried out to observe human thermoregulation in different
scenarios (all considering cold and hostile environments). The tests were
carried out in a climate chamber at the Polytechnic University of Turin and at
Loughborough University. The factors that had the greatest impact on human
thermoregulation were clothing insulation, environmental conditions (such
as temperature and wind speed), and the level of physical activity. For this
reason, the tests were carried out in such a way that one characteristic was
varied per test. To summarise, the different protocols were carried out as
follows:

• Simulated mountaineering excursions: Participants were exposed to
different environmental conditions (−10 ◦C, −15 ◦C, −17 ◦C, −20 ◦C,
−30 ◦C) wearing two different insulation levels of footwear (with
different clo values where 1 clo corresponds to 0.155 m2K/W) to simulate
real mountaineering activities.

• Light walking exercises on a treadmill: Participants walked lightly to
maintain a sufficient metabolic rate and avoid shivering. Shivering is
an unwanted in these tests as its connected metabolic response would
constitute a confounding factor. The tests were carried out under different
environmental conditions (−10 ◦C, −15 ◦C, −17 ◦C, −20 ◦C, −30 ◦C)
and with different insulation levels of the boots (clo value).

• Worst-case scenario tests: Participants were asked to remain in the climate
chamber, where extreme conditions were simulated, with different
environmental conditions (−10 ◦C, −15 ◦C, −17 ◦C, −20 ◦C, −30 ◦C)
and different levels of footwear insulation (clo).
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In each test, some parameters were determined, such as mean skin
temperature, which was assessed using the 14-point method described in the
international standard ISO 9886:2004 (Ergonomics - Assessment of thermal
strain by physiological measurements) (ISO 9886, 2008), the temperature of
the big toe, the heart rate, the levels of insulation of the different garments
worn, which were assessed according to ISO 15831:2004, and thermal
images to assess the surface temperature of the boots and to define the cleats
that were effectively in contact with the ground.

Computational Models

Starting from an existing model of boot designed for extreme alpinism and
ice climbing (Phantom Tech HD, produced by S.C.A.R.P.A., Asolo, Italy) a
3D reconstruction was created with CAD software. According to the different
areas in terms of composition, the model was split into eleven regions to allow
the user to assign different thermal properties according to the subjected
area. For this purpose, the materials involved were tested according to ISO
9920:2007 (Ergonomics of the thermal environment — Estimation of thermal
insulation and water vapor resistance of a clothing ensemble) (ISO 9920,
2007) to evaluate their thermal properties. A User Defined Database (UDD)
was created as a material library. Numerical simulations were set up in
Computational Fluid Dynamics (CFD) software to reproduce the same test
condition of the ISO 15831:2004 standard. For this reason, the internal
volume of the boot structure is constituted by a hot body set at a Tfoot
of 34 ◦C. Gaps of quiescent air were interposed between the boot and the
“body” in some specific areas (i.e., the lacing area and the contact area
between the foot and the insole were excluded supposing a perfect contact in
these areas) to mimic the realistic presence of an air layer in the system. The
ambient temperature (Ta) was set to 10 ◦C and different boundary conditions
were imposed in the different areas of the boots:

• Heat transfer coefficient: in the areas in which the boot was in contact
with the layer of quiescent air, a convective boundary condition was
imposed using a convective heat transfer coefficient (hc) calculated with
Ta and a wind speed (ws) of 0.4 m/s as specified in the reference standard.
The hc was then evaluated as follows (Parsons, 2014; Santee and William,
2012):

hc =
Nu · ka

L
(Wm−2K−1)

Where Nu is the Nusselt number, ka is the thermal conductivity of air and
L is the characteristic length (set as a constant at a value of 0.4 m). Nu
was evaluated as (Parsons, 2014):

Nu = 0.24 · Re0.6

Re is the Reynolds number given by the ratio between the product of ws
and L and the kinematic viscosity of air at the temperature considered,
denoted ν (i.e., 1,31·10−6 m2s−2 at 10 ◦C).
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The value of ka was calculated with the following method (Kerslake,
1972):

ka = 2.41 · 10−2
+ 7.8 · 10−5

· Ta (Wm−1K−1)

Ta is the ambient temperature in K.

• Prescribed temperature: in the area in which the boot was in contact with
the ground a fixed temperature was imposed at the same value of Ta. The
cleats that effectively were in contact were observed with the thermal
images acquired in the experimental campaigns. The same condition was
set in the hot body, fixing his temperature at Tfoot.

In this way, the value of the RcT of the boot was calculated, and the ratio
between the temperature gradient between the foot and the environment and
the heat flux released by the hot body to keep its temperature constant as
follows:

RcT =
(Tfoot − Ta)

Hf ,foot
(m−2K/W).

Data-Driven Model

Due to the strong correlation between mean skin temperature and big
toe temperature, various approaches have been explored to predict big
toe temperature from skin temperature data. Given the strong temporal
dependencies in the dataset, the most effective approach identified relies on
Recurrent Neural Networks (RNNs). However, a major challenge with these
architectures is the vanishing gradient problem: during backpropagation
through time (BPTT), gradients can shrink exponentially, leading to near-zero
weight updates and the loss of long-term dependencies.

This issue has been effectively addressed with the introduction of Long
Short-Term Memory (LSTM) networks, which differ from standard RNNs
by incorporating an internal recurrence (self-loop). This mechanism helps
regulate the flow of information and mitigates the effects of vanishing and
exploding gradients (Lipton et al., 2015; Mienye et al., 2024). Specifically,
each LSTM cell includes additional parameters and a system of gating
units—input, output, and forget gates—that dynamically control information
retention and forgetting, allowing the network to selectively propagate
relevant information while discarding less important signals. The neural
network was trained on the datasets collected from human experiments.
The data were labeled based on the following criteria: temperature (ambient
temperature at which the tests were conducted), activity level (0 for rest,
1 for light walking, and 2 for intense activity), and RcT (insulation level of
the boot worn). Before training, the dataset was normalized using a Robust
Scaler to ensure consistent feature scaling. Furthermore, hyperparameter
tuning was conducted to optimize the model’s performance. The parameters
adjusted included: the number of units in the first and second LSTM layers,
dropout rates for both layers, and the learning rate. Moreover, a custom loss
function to monitor the training process was created to evaluate the algorithm



A Multimodal Approach to Predicting Toe Temperature 205

performance based on the difference between the predicted time to reach the
threshold and the experimentally measured one.

Once the LSTM was trained, the prediction of big toe temperature was
compared with the test datasets (one for each condition) previously excluded
from the training and validation ones (splitting of the training dataset in
training and validation was done at 20%). The final, most robust, LSTM was
then used as a big toe temperature predictor, which uses as input the mean
skin temperature given by the thermoregulation model JOS-3 (Choudhary
and Udayraj, 2023; Kobayashi and Tanabe, 2013; Takahashi et al., 2021).

RESULTS

The most accurate Long Short-Term Memory (LSTM) architecture, as
identified through hyperparameter optimization, consisted of the following
configuration:

• Two LSTM layers followed by a final dense output layer.
• Number of units in the first layer: 128.
• Number of units in the second layer: 32.
• Dropout rates: 0.4 (first layer), 0.2 (second layer).
• Learning rate: 1e-5.
• Optimizer: Adam.
• Activation function: tanh for both LSTM layers.

Figure 1 presents a surface plot of the mean absolute error (MAE, evaluated
as the distance between the predicted and true temperature time series) on the
validation set across all tested hyperparameter configurations, presented as
a function of only two of the five explored hyperparameters in each subplot.
The effect of changing the number of layers, type of optimizer, and activation
function is not shown as the presented choices were quickly identified as the
best ones without the need of a structured optimization approach. To ensure
clarity in the visualization, only the top 50 performing configurations are
displayed.

A custom loss function was also implemented to better reflect the specific
prediction objective. Since the primary goal of the model is to estimate the
time at which the temperature curve reaches a critical threshold of 15 ◦C, the
loss function incorporates a SoftMax component that penalizes discrepancies
between the predicted time-to-threshold and the experimentally observed
value. The β parameter of the SoftMax function, which controls its sharpness,
was also tuned as part of the optimization process.

The model’s predictions were evaluated against experimental data in six
different scenarios. As illustrated in Figure 2, prediction accuracy tends to
degrade in scenarios labeled as Level 2 physical activity (i.e., high-intensity
exertion). This reduction in performance may be attributed to inter-individual
variability in physiological response to intense activity due to different
training levels, which introduces additional complexity to the prediction task.
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Figure 1: Surface plot of the best 50 architectures resulting from the hyperparameter
tuning.

Despite this, the LSTM model performs well under “critical”
scenarios—such as conditions involving sustained stillness for 70 minutes—
demonstrating its robustness in predicting temperature dynamics under
thermally stressful but physically passive conditions.

Figure 2: Comparison between test and predicted data.
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In Table 1 the performance in terms of accuracy of the predicting the
time to reach threshold (i.e., 15 ◦C) is reported. The different scenario
is labelled as (ambient temperature, level of activity, and level of boot
insulation) where the level of boot insulation is defined as A or B. The model’s
predictions were evaluated based on the following classification (Heydarian
et al., 2022): True Positive (TP) if the threshold was reached within ±10
minutes of the experimental time, False Positive (FP) if the prediction deviated
by more than 10 minutes from the experimental time, True Negative (TN) if
neither the prediction nor the experimental curve reached the threshold,
and False Negative (FN) if the error exceeded 10 minutes.

Based on the confusion matrix in Table 1, the model results in the
following:

• TP = 3.
• FP = 2.
• TN = 0.
• FN = 1.

Then, the accuracy, precision, and recall are evaluated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Table 1: Confusion Matrix of the LSTM model.

Case Ground Truth LSTM Prediction Time Error (min)

(−10, 0, A) 1 1 2
(−17, 0, B) 1 1 6
(−10, 1, A) 1 1 10
(−17, 1, A) 1 0 N/A
(−15, 2, B) 1 1 5
(−20, 2, B) 1 1 30

The accuracy measures the proportion of correct predictions over the total
number of cases, providing an overall indication of model performance.
Precision represents the ratio of true positives to the total number of predicted
positives, reflecting the correctness of positive predictions. Recall measures
the ratio of true positives to the total number of actual positives, indicating
the model’s ability to correctly identify positive cases.

The model achieved an accuracy of 0.5, precision of 0.6, and recall of
0.75. These results indicate that while the model is relatively effective at
identifying instances where the temperature crosses the 15 ◦C threshold, it
also experiences some significant prediction errors.
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The high recall (75%) suggests that the model successfully identifies most
of the positive cases—when the temperature drops below 15 ◦C. However,
the lower precision (60%) indicates that the model incorrectly predicts some
events, resulting in false positives. This suggests that the model is more adept
at identifying potential threshold crossings but tends to overestimate their
occurrence in some cases. The accuracy value of 50% reflects that the model
makes correct predictions in only half of the cases. This could be attributed
to a high error rate in both positive and negative classifications, possibly
influenced by class imbalance or the inherent difficulty of the prediction
task. These results highlight the trade-off between precision and recall, which
is common in classification problems. In this case, prioritizing recall over
precision has led to a model that detects more positive events but at the cost
of increased false positives.

Moreover, the development of a standardized system for CFD simulations
has significantly enhanced the model’s predictive capabilities. By simulating
thermal dynamics in various boot configurations, the model can now
predict the temperature decrease over time under different environmental and
physical activity conditions. The CFD simulations are particularly valuable
in estimating the RcT of new boot models, which is one of the key parameters
used by the neural network to make predictions.

The reliability of the CFD system has been rigorously evaluated by
comparing the simulation results with experimental data. Specifically, the
deviation between the simulated RcT values and those obtained through
laboratory tests, conducted according to the ISO 15831 standard, was
analyzed.

This comparison ensures that the CFD model accurately reflects the real-
world performance of different boot models, thereby validating its use in the
overall prediction process.

CONCLUSION

A new method for monitoring and predicting the physiological response in
terms of thermoregulation in cold environments, specifically concerning the
monitoring of big toe temperature, has been developed. Future improvements
could involve fine-tuning the model to strike a better balance between these
two metrics, potentially by adjusting the classification threshold or exploring
additional techniques for handling class imbalance. Although the model
currently operates with a slight bias toward false positives, it is preferable
to adopt a more conservative approach in this context. Since the goal is to
predict and avoid hazardous conditions, prioritizing the detection of potential
threats, even at the cost of increased false positives, ensures a safer outcome,
as it helps to prevent dangerous situations before they occur.
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