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ABSTRACT

Large language models (LLMs) are increasingly integrated into design workflows,
with their powerful generative capabilities positioning them as promising design
collaborators. A crucial aspect of this integration is leveraging LLMs to emulate
cognitive styles—which represent designers’ thinking, problem-solving, and
decision-making strategies—to enhance their understanding of design and improve
collaboration with different types of designers. Previous studies have explored using
LLMs to generate design outcomes based on different cognitive styles, neglecting
the design cognition process itself. This study focuses on LLMs’ ability to emulate
the design processes of problem-driven and solution-driven cognitive styles using
a zero-shot chain-of-thought prompting strategy. The method is evaluated by
measuring LLMs’ alignment with human cognitive patterns under different design
constraints. Results indicate that LLM-generated design processes align well with
human cognitive styles, effectively capturing static cognitive characteristics, such as
the ratio between problem and solution spaces. Moreover, this emulation enhances
the novelty and integrity of LLM-generated design outcomes. However, LLMs still
need improvement in emulating complex nonlinear transitions between problem and
solution spaces, as seen in human designers. This process-based emulation has the
potential to enhance LLMs’ role in design teams, enabling them to serve not only
as tools for generating solutions but also as cognitive support systems, facilitating
collaboration across key stages of the design process.
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INTRODUCTION

Cognitive styles, designers’ thinking methods and behavioral patterns to
process information, solve problems, and make decisions, reflect their
strategies and preferences in design tasks (Christiaans and Dorst, 1992). In
team collaboration, the diversity of cognitive styles among designers can
enhance problem-solving efficiency, foster creativity, and improve overall
team performance.

The ‘Co-evolution of problem–solution’ model (Dorst and Cross, 2001)
serves as a key theoretical framework for understanding differences in
designers’ cognitive styles. The design process is an iterative cycle of analysis,
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synthesis, and evaluation, involving continuous interactions between the
problem space and the solution space. Based on this model, designers
can be categorized into two cognitive styles: problem-driven and solution-
driven. Problem-driven designers prioritize structuring the problem before
developing solutions, while solution-driven designers generate solutions
when design problems still ill-defined, and then work backward to define
the problem. Designers with different expertise and disciplinary backgrounds
exhibit distinct cognitive style tendencies (Jiang, Gero and Yen, 2014).
Different cognitive styles also adapt differently to design tasks, excelling in
some more than others.

As a rapidly advancing technology, large language models (LLMs)
have shown considerable potential in the field of design. Their powerful
generative capabilities position them as potential collaborators in design
teams, emulating different cognitive styles (Lapp, Jablokow and McComb,
2019; Agarwal, Jablokow and McComb, 2025). These emulations aim
to bridge cognitive differences among team members, enable designers to
leverage their individual strengths, and ultimately produce more feasible and
high-quality design solutions.

However, previous studies have been limited in leveraging LLMs to directly
generate design outcomes based on different cognitive styles, neglecting
the emulation of the design process itself. In fact, the evolutionary
development between problem and solution spaces better reflects the core
differences in cognitive styles (Chen et al., 2023). Moreover, communication
and collaboration within design teams extend beyond simply exchanging
solutions, but span multiple stages of the design process—from problem
analysis, idea generation, to evaluation. To better integrate LLMs into design
teams, it is necessary to consider the emulation of the design cognition
process.

To this end, our study, based on the cognitive style taxonomy proposed
by Dorst and Cross (2001), explores how LLMs can be used to emulate
the design processes of problem-driven and solution-driven designers. We
develop a zero-shot chain-of-thought (CoT)-based prompting strategy that
enables LLMs to emulate the step-by-step cognitive flow of both design
styles. The prompt design is inspired by Jiang et al. (2014) and Chen et al.
(2023), who analyzed cognitive differences in conceptual design process
using the Function-Behavior-Structure (FBS) ontology model. Furthermore,
we evaluate LLMs’ performance to emulate cognitive styles under different
design constraints by measuring their alignment with established patterns of
human designers, which could provide a solid foundation for improving the
generalizability, reliability, and interpretability of our research findings.

DESIGN COGNTIVE PROCESS BASED ON FBS ONTOLOGY MODEL

Design process is the co-evolution process between problem space and
solution space. During this process, some designers focus more on analysing
problem, while others pay more attention to generate solutions. This
difference is reflected in two fundamental cognitive styles: problem-driven
and solution-driven (Dorst and Cross, 2001).
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Figure 1: The FBS ontology model (adapted from Gero and Kannengiesser, 2004).

Protocol analysis of design sessions serves as the empirical basis for
assessing problem- and solution-driven cognitive styles, with design issues
classified according to the FBS ontology model (Gero and Kannengiesser,
2004). The FBS model (as shown in Figure 1) provides a general framework
for analyzing the design cognitive process. Within this model, the problem
space consists of specific design issues, including Requirement (R), Function
(F), and Expected Behaviour (Be), while the solution space is composed of the
remaining design issues, namely Structure (S) and Structural Behaviour (Bs).
The transformation between these design issues defines the syntactic design
process, further illustrating the dynamic interaction between the problem
space and the solution space. This process comprises seven transformation
types: Formulation, Synthesis, Analysis, Evaluation, Reformulation-S,
Reformulation-Be, and Reformulation-F.

Based on the FBSmodel, Jiang et al. (2014) proposed the Problem–Solution
Index (P-S Index), which quantifies the proportion of a designer’s focus
on the problem space versus the solution space, effectively distinguishing
between problem-driven and solution-driven cognitive styles. Building on
this, Chen et al. (2023) conducted a design experiment with 54 industrial
design students, employing the FBS framework to investigate how problem-
driven and solution-driven designers dynamically transition between design
issues throughout the conceptual design process.

These studies establish both theoretical and empirical foundations for
distinguishing cognitive styles. By quantifying designers’ problem-solution
focus and tracking their cognitive transitions, they provide key benchmarks
for us to assess how well LLMs can emulate human cognitive styles.

METHOD

Figure 2 illustrates the experimental design and evaluation process for LLMs’
cognitive style emulation.
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Figure 2: Methodology: experimental design and evaluation process.

Cognitive Styles Emulation Method: Zero-Shot-CoT Prompts

We employed Zero-Shot Chain-of-Thought (Zero-Shot-CoT) prompting
with GPT-4o to emulate design processes associated with problem- and
solution-driven cognitive styles. There are two main reasons for choosing
Zero-Shot-CoT: first, CoT has been proven to enhance LLMs’ ability to solve
complex problems by generating intermediate reasoning steps; second, Zero-
Shot-CoT requires only a simple prompt without additional training, making
it more convenient and widely applicable (Wei et al., 2022).

For prompt design, we incorporated the CO-STAR framework, developed
by the winner of the GPT-4 Prompt Engineering Competition (Teo, 2023).
Tables 1 and 2 present the parameter settings and prompts for problem-
driven and solution-driven cognitive styles, respectively. Each prompt consists
of several key aspects: Context, which defines the assigned cognitive style
and its characteristic design process, inspired by Dorst & Cross (2001) and
Chen et al. (2023); Objective, which specifies the generation task; and Style
and Tone, which represent the writing style and attitude of the response.
When inputting prompts into GPT, each aspect was enclosed using XML-
style delimiters (e.g., <tone>...</tone>), a formatting approach optimized for
LLMs comprehension.

Table 1: List of prompt for problem-driven cognitive style emulation.

Aspect Specific Prompts

Objective Act as a <problem-driven> cognitive-style product designer and
generate the design process step-by-step for solving <design-task>

Context A <problem-driven> cognitive-style product designer follows these
key characteristics:

Continued
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Table 1: Continued

Aspect Specific Prompts

1. Flexible transitions between the problem space and the solution
space, with a strong emphasis on deep understanding and
definition of the problem. This approach results in fewer but
highly focused solutions, with evaluations driven by requirements
and problems

2. Highly focused on problem-based design issues, including: Design
requirements, product purpose and intent, and expected
behaviours

3. A problem-space-dominant design process, particularly in the early
stages, with sustained attention throughout, involving: Defining
the problem space, reformulating expected behaviours, and
reformulating product objectives

4. Relatively lower engagement in the solution space, especially in the
early stages, but gradually increasing as the design progresses. This
includes: Synthesizing product structures, analyzing the
behavioural performance of design solutions, evaluating whether
the performance meets expectations, and reformulating product
structures

Style Simulate the think-aloud style of a <problem-driven> product
designer, expressing reasoning and analysis naturally in a clear and
intuitive manner

Example: “What are the common indicators for health monitoring?
Can specific functions be designed for high-risk diseases?”

Tone Maintain a professional, logical, yet exploratory and creative tone

Table 2: List of prompt for solution-driven cognitive style emulation.

Aspect Specific Prompts

Objective Act as a <solution-driven> cognitive-style product designer and
generate the design process step-by-step for solving <design-task>

Context A <solution-driven> cognitive-style product designer follows these
key characteristics:

1. Flexible transitions between the problem space and the solution
space, with a strong emphasis on driving practical design progress,
particularly in solution generation and optimization. Designers
generate solutions when design problems still ill-defined, and then
work backward to define the problem

2. Highly focused on solution-based design issues, including: Product
elements and their interrelationships (e.g., dimensions,
components, materials, shapes, and technologies), and the impact
of structural factors on the behavioural performance of the design

3. A solution-space-dominant design process, which is highly
involved from the initial stage and expands rapidly as the design
progresses. This includes: Synthesizing product structures,
analyzing the behavioural performance of design solutions,
evaluating whether the performance meets expectations, and
reformulating product structures

Continued
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Table 2: Continued

Aspect Specific Prompts

4. A relatively lower emphasis on the problem space. This includes:
Defining the problem space, reformulating expected behaviours,
and reformulating product objectives

Style Simulate the think-aloud style of a <solution-driven> product
designer, expressing reasoning and analysis naturally in a clear and
intuitive manner

Example: “What are the common indicators for health monitoring?
Can specific functions be designed for high-risk diseases?”

Tone Maintain a professional, logical, yet exploratory and creative tone

Design Tasks

To enable a comparison with the findings observed by Chen et al. (2023)
regarding human designers, we adopted a similar design task framework,
divided into two types: without constraint and with extra constraint. The
without constraint design task required generating product design concepts
for use in a bathroom. The with extra constraint design task involved the
same goal but added the following constraints: the product must ensure
“safety,”; it must be “energy-efficient”, and each product must have at least
two distinct functions.

Using our CoT-based method, we employed GPT-4o to emulate
problem-driven and solution-driven cognitive styles to address these two
tasks, resulting in four groups: P1 (Problem-driven without constraint),
P2 (Problem-driven with extra constraint), S1 (Solution-driven without
constraint), and S2 (Solution-driven with extra constraint). Each group
contained ten independently generated design processes. Additionally, to
establish a baseline for comparison, we directly input the design tasks into
GPT-4o without simulating specific process of cognitive styles, generating
design outcomes as baseline groups: B1 (Baseline without constraint) and B2
(Baseline with extra constraint). Each baseline group also consisted of ten
independently generated design outcomes.

Evaluation Metrics

To evaluate the effectiveness of LLMs in emulating cognitive styles, this
study establishes a three-dimentional evaluation metrics: static distribution
(the proportion and preference of cognitive issues), dynamic transformation
(behavioral transition patterns), and the creativity of the design outcomes.
Using previous studies identified human design behaviours as a benchmark,
we compare the cognitive styles emulated by LLMs against human
performance to assess their alignment and differences.

Static distribution. This metric consists of two aspects. First, the
proportion of design issues highlights that problem-driven designers exhibit
higher cognitive proportions in Function and Expected Behavior, whereas
solution-driven designers show higher proportions in Structure Behavior and
Structure. In both cognitive styles, the proportion of Requirement remains
the lowest. Second, the P-S Index quantifies the ratio of design issues in
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the problem space to those in the solution space, as defined in Formula 1.
P-S Index value of ≤ 1 categorizes a session as solution-driven, while a value
of > 1 categorizes it as problem-driven.

P−S Index =
∑

(design issues related to problem)∑
(design issues related to solution)

=

∑
(R,F,Be)∑
(S,Bs)

(1)

Dynamic transformation. This metric also includes two aspects. In terms
of the design process, problem-driven designers exhibit higher proportions
of Formulation and, under unconstrained conditions, Evaluation. While
solution-driven designers demonstrate higher proportions of Analysis and
Reformulation-S, with Reformulation-Be being higher under unconstrained
conditions. The proportions of Synthesis and Reformulation-F are similar
across both cognitive styles. Regarding process transition, problem-driven
designers focus on problem exploration, frequently transitioning through
P→P (deepening within the problem space), P→S (problem to solution), and
S→P (solution to problem). Conversely, solution-driven designers prioritize
solution generation, with significantly more transitions in S→S (iterating
within the solution space).

Design outcomes. While previous studies have not reached a consensus
on whether problem- and solution-driven cognitive styles lead to differences
in design outcomes, emulating the design process based on these cognitive
styles may enhance the creativity of LLMs-generated solutions compared
to direct generation. Therefore, we compare solutions generated through
CoT-guided cognitive style emulation with those generated directly by LLMs.
The evaluation follows the framework proposed by Verhaegen et al. (2013),
incorporating three key metrics: novelty, feasibility, and integrity.

Data Processing Method

Coding scheme for design behaviours. We employed protocol analysis to
examine whether the design processes generated by LLMs align with the
characteristics of the two cognitive styles observed in designers. Following
the FBS ontology, we applied a “one-segment-one-code” approach, where
transcribed text was segmented and coded, with each segment assigned
to only one of the five design issues in the FBS framework. Two PhD
students specializing in industrial design and familiar with the FBS coding
model independently segmented and coded the transcripts. The inter-coder
reliability, calculated based on the results from both coders, was 79.5%
(Lombard, Snyder-Duch and Bracken, 2005).

Expert assessment of creativity. We extracted novelty, feasibility, and
integrity for our evaluation dimensions of creativity. They were rated on a
1–7 Likert scale by two independent experts (both were engaged in industrial
design-related research for more than ten years). The Pearson’s r value
of the two experts’ scoring results was 77.02%, which ensured credibility
(Lombard, Snyder-Duch and Bracken, 2005).
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RESULT

Static Distribution

The proportion of design issues. Table 3 presents the results of an
independent t-test analyzing the impact of LLM-emulated design cognitive
classifications on the distribution of Design Issues under different design
tasks (with and without extra constraints). The LLM-emulated cognitive
styles closely aligned with human designers in their distribution of design
issues. Problem-driven design processes dedicated a higher proportion of
attention to F and Be, while solution-driven processes focused more on Bs
and S, mirroring human design patterns. However, we still observed some
inconsistencies. Under extra constraint design task, the emulated problem-
driven design process did not show significantly higher attention to Be
compared to the solution-driven process. Additionally, the LLM-emulated
problem-driven designers spent a higher proportion of cognitive effort to R
than human designers.

Table 3: Significance test of five issues, seven processes, and four process transitions
between LLM-emulated problem-driven and solution-driven designers under
non-constraint and constraint conditions.

Without Constraint With Extra Constraint

P1 S1 P2 S2
Mean Mean t p Mean Mean t p

Design issue
R 9.7 4.3 3.816 0.001 13.5 2.9 5.304 <0.001
F 18.9 9.2 6.812 <0.001 16.7 8.7 3.934 <0.001
Be 10.5 13.6 −2.187 0.042 12 14.2 −6.17 0.545
Bs 6 10.6 −2.255 0.370 4.2 10.5 −3.825 0.001
S 10.6 29.3 −8.843 <0.001 17.6 27.8 −3.510 0.003
Design process
Formulation 31.7 16.3 8.489 <0.001 33.00 15.30 3.675 0.002
Evaluation 5 6.9 −.900 0.380 2.4 7.7 −2.93 <0.009
Analysis 1 3.7 −3.773 0.001 1.8 2.8 −1.028 0.318
Synthesis 4.8 7.8 −3.120 0.006 7.8 7.2 0.416 0.682
Reformulation−S 5.8 21.5 −9.165 <0.001 9.8 20.6 −3.561 0.002
Reformulation−Be 3.6 6.2 −3.133 0.006 4.9 5.8 −.542 0.595
Reformulation−F 2.8 3.6 −1.095 0.288 3.3 3.7 −.372 0.714
Process transition
P→ P 30.7 15.3 8.489 <0.001 32.00 14.30 3.675 0.002
P→ S 6.7 10.5 −.3.83 0.001 8.7 10.4 −0.995 0.333
S→ S 9.9 29.4 −8.949 <0.001 13.1 27.9 −4.454 <0.001
S→ P 6.4 9.8 −3.478 0.003 8.2 9.5 −0.737 0.471

P-S Index.The P–S index values for each design session are shown in Fig. 3,
with a reference line at 1.00 representing the boundary between problem-
focused and solution-focused design styles. All LLM-emulated problem-
driven design sessions aligned with the expected problem-focused style. For
solution-driven sessions, all but two under the extra constraint condition
aligned with the solution-focused style.
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Figure 3: P–S index distribution across design sessions.

Dynamic Transformation

Design process. Table 3 presents the results of an independent t-test. The
LLM-emulated cognitive styles aligned with human designers in several
key design processes, including Formulation, Synthesis, Reformulation-S,
Reformulation-Be, and Reformulation-F. However, discrepancies were
observed in Evaluation, Analysis, and Synthesis. In unconstrained tasks,
LLM-emulated solution-driven designers exhibited significantly higher
proportions of Analysis and Synthesis compared to problem-driven designers,
whereas no significant difference was found under constrained conditions.
For Evaluation, the solution-driven designers demonstrated significantly
higher proportions than problem-driven designers under constrained
conditions.

Process transition. LLMs’ emulation of problem-driven and solution-
driven cognitive styles showed significantly higher P→P and S→S transitions,
respectively, aligning with patterns observed in human designers (Table 3).
However, the LLMs’ performance diverged from human designers when
it came to transitions between the problem and solution spaces. Problem-
driven designers tend to exhibit greater flexibility in iterating between P→S
and S→P transitions compared to solution-driven designers. In contrast, the
LLMs’ emulation of problem-driven cognitive styles failed to capture this
flexibility, with notably fewer inter-space transitions. Under unconstrained
conditions, the emulated problem-driven designers even demonstrated
significantly lower P→S and S→P transitions than their solution-driven
counterparts (p < 0.01).

Design Outcomes

Figure 4 illustrates the results of various dimensions of creativity assessment.

Figure 4: Novelty, feasibility, and integrity scores.
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Novelty. Both problem-driven and solution-driven designs achieved
significantly higher novelty than the baseline group (p < 0.05). Unconstrained
tasks resulted in higher novelty scores compared to constrained tasks.

Feasibility. The feasibility of P2 (problem-driven with extra constraint)
designs did not significantly exceed the baseline, while all other groups
showed significant improvements over the baseline (p < 0.05). Additionally,
P2 designs were marginally but significantly less feasible than S2 (Solution-
driven with extra constraint) designs. Among all groups, the baseline under
constrained conditions had the lowest feasibility, struggling tomeet the design
brief requirements.

Integrity. Both problem-driven and solution-driven designs significantly
outperformed the baseline group in integrity (p < 0.05). Across cognitive
styles, solution-driven consistently achieved higher completeness than
problem-driven designs. However, no significant differences were observed
between constrained and unconstrained tasks.

CONCLUSION AND DISCUSSION

As LLMs become increasingly integrated into design workflows, becoming
potential collaborators for designers, their ability to emulate designers’
cognitive styles is crucial for enhancing their understanding of design and
improving collaboration with different designers. However, previous research
has primarily focused on emulating the design outcomes produced by
designers with different cognitive styles, less attention has been given to
generating the design cognition process, which plays a key role in problem-
solving and creativity. This study evaluates LLMs’ ability to emulate the
design processes of problem-driven and solution-driven cognitive styles using
a zero-shot CoT prompting strategy.

The results indicate that the design processes generated by LLMs align well
with the diverse cognitive styles of human designers, in terms of design issue
distribution and process patterns. Moreover, process emulation based on
cognitive styles enhances the novelty and integrity of the solutions generated
by LLMs, demonstrating superior creativity compared to baseline methods.
This suggests that LLMs can serve not only as tools for generating design
solutions but also as cognitive support systems tailored to different design
stages, thereby facilitating their deeper integration into design teams.

Although LLMs exhibit strong emulation capabilities in cognitive styles
and share a similar cognitive focus with the human designers they are
modelled after in terms of static characteristics—such as the ratio between
the problem space and the solution space—there remains scope for further
improvement in dynamic transitions, particularly in cross-space interactions
(e.g., P→S or S→P). Specifically, LLMs tend to maintain a sustained focus on
one space at a time, progressing linearly while exhibiting fewer bidirectional
transitions between P and S. In contrast, human designers adopt nonlinear
cognitive strategies, flexibly navigating between these spaces and iteratively
refining problem definitions based on emerging solutions, demonstrating
greater adaptability. As a result, the evolutionary complexity and adaptability
of LLM-generated design processes remain significantly lower than those of
human designers.
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This finding highlights potential directions for optimizing LLMs in
emulating nonlinear reasoning across the problem-solution space. While
the Zero-Shot Prompt strategy ensures generalizability, future research
should explore more deep reasoning strategies. Fine-tuning LLMs with real-
world design data or incorporating the Graph of Thoughts (GoT) approach
could enable dynamic retrospection, information aggregation, and parallel
exploration, enhancing LLMs’ performance in emulating human complex
cognitive processes.

Furthermore, this study evaluated LLMs’ ability to emulate human
cognitive styles under different constraint conditions. Future research should
extend the analysis to various design domains and task complexities,
investigating how LLM-emulated cognitive styles influence human-AI
collaboration patterns. Such explorations could help refine the role of
LLMs in design teams, optimizing their integration into collaborative design
workflows.
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