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ABSTRACT

Time series modeling is a powerful tool utilized across multiple domains to assess
the underlying stochastic mechanisms in a dataset or to predict future values based
on past values in the series. Time series forecasting has been used for many
applications including the stock market, healthcare, and environmental sciences.
Traditional models like ARIMA struggle with more sophisticated datasets that may
have non-linear patterns, whereas more advanced machine learning models were
created to handle those relationships. Despite the wide range of uses for time series
modeling, use in psychology is limited. We propose by better understanding these
models’ forecasting abilities with human behavioral datasets, time series can be
used in various psychological and human factors applications such as monitoring
and predicting behavior for improved interface design. Our work uses this tool to
predict future values in a specified time trial in two human behavioral datasets. We
compare the performance of ARIMA models and XGBoost models to evaluate the
strengths and weaknesses of both models and establish which model performed best
in our chosen evaluation metrics. Overall, ARIMA had more favorable values across
performance metrics in most conditions, although XGBoost models still had well-
performing scores. Although the models in our work performed well, the data needed
to possess a stable mean and variance to utilize them. This requirement led to a loss
of the trend throughout the time trial that was unique to each conditions’ effect on
participants. Future research can utilize what we learned to work towards predictive
time series models that accurately capture the unique trend of human behavioral data
for more enhanced interface design.
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INTRODUCTION

Time series analysis serves two purposes: to model the stochastic mechanism
that gives rise to an observed series and to predict or forecast the future values
of a series based on its history (Jebb et al., 2015). Researchers have used
time series modeling across a wide variety of domains, including economics,
natural sciences, and engineering (e.g., Liu, 2024a; Ariyo et al., 2014, Yadav
et al., 2020; Sharma et al., 2024).Many have suggested times series modeling
could also be advantageous in psychology for its predictive abilities (e.g.,
Jebb et al., 2015; Velicer & Fava, 2003), and offer real-time capabilities
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(Parpoula, 2024). However, the use of time series modeling in psychology
remains limited. In the current work, we test the predictive accuracy of time
series forecasting in two unique datasets with two different models.

ARIMA Models

There are multiple methods for constructing time series models that vary
in complexity. Autoregressive integrated moving average (ARIMA) models
are the traditional choice (Hyndman & Khandakar, 2008a). ARIMA models
are a type of regression analysis that operate under the assumption that
a function of certain steps of past values can explain a current value in
a series (Shumway et al., 2000). These models gauge the strength of one
dependent variable relative to the other changing variables. ARIMA models
include three parameters: autoregression (AR), integrated (I), and moving
average (MA). Of particular interest in our work is the integrated term,
which describes the stationarity of a dataset. Stationary data varies around a
fixed mean instead of a varied one (Velicer & Fava, 2003). If the dataset
is non-stationary, then it is required to difference the data to ensure it is
stationary. Statistical tests such as the KPSS and the Augmented Dicky-
Fuller test have been developed to evaluate if a dataset is stationary to
avoid variance in the mean leading to an invalid regression (Mushtaq, 2011;
Hyndman & Khandakar, 2008b). The number of rounds of differencing
required is what the integrated term refers to. Human behavioral datasets
often do not have fixed means. A notable downside to the ARIMA model is
that these parameters are subjective. Researchers must manually define the
three parameters, contributing to forecasting errors and the time investment
needed to build the model (Liu, 2024).

ARIMA is a linear model, allowing it to excel only at short term and linear
problems. Meaning it is usually inadequate for long-term modeling (Jebb
et al., 2015). Long-term modeling is one reason ARIMAmay not be the best-
fit model for a dataset. ARIMA models also fall short with datasets that are
composed of many interrelated variables. For example, these models excel
at predicting sales and stock market analysis. These models assume linear
relationships in datasets and may lead to erroneous predictions when outlier
events occur, lacking flexibility for real-world applications. They also risk
becoming computationally expensive with non-stationary or large datasets
(Liu, 2024).

Datasets become stationary by differencing, but risk losing information.
Differencing stabilizes the mean of a time series by removing change.
Differenced datasets will only have T-1 values since it is impossible to
calculate the difference for the first value, leading to information loss with
increased differencing (Hyndman & Athanasopoulos, 2018). A complex,
non-stationary dataset may include data collected using multiple measuring
techniques and instruments, or a variation of short-term and long-term
repeating patterns. ARIMA models may also have shortcomings in capturing
complex temporal dependencies between observations, and cannot depict
multiple reoccurring patterns in data (Weerakody et al., 2021).
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Modeling Alternatives

Various machine learning models have been created that use different
methods to carry out time series analysis. We chose to focus on gradient
boosting models due to their efficiency and success in predictive modeling
in other fields (Fang et al., 2022; Zhang et al., 2021; Alim et al., 2020).
Gradient boosting models allow us to randomize samples in the training
and testing data set. In contrast, both neural networks and ARIMA would
need the samples to be in time order and split accordingly (Chen et al.,
2024). XGBoost is a gradient boosting model that outperforms similar
models in Kaggle competitions (Chen et al., 2024). XGBoost’s unique feature
is its ability to build an ensemble of unique models, specifically it builds
many relatively weak models that work to correct the errors of previous
trees to obtain a strong prediction (Natekin & Knoll, 2013). This process
relies on supervised learning to find patterns in the data and generalize
them to new data. The initial base models are slightly better than random
guessing. Through boosting they become more accurate, reducing remaining
errors to improve prediction iterations (Chen & Guestrin, 2016). In the
beginning weights are spread out equally with low variance, but with each
iteration, weight functions get updated where needed to reduce bias (Nielsen,
2016). This results in a model that is trained to give weight to beneficial
interactions. Once trees reach max depth, they are pruned backwards until
improvement in the loss function is below threshold (Sagi & Rokach, 2021).
Multiple parameters are available to fine tune XGBoost’s performance and
modelers may tailor them to fit their needs, making it suitable for a wide
array of applications. XGBoost is also well suited to handle missing values
(Chen & Guestrin, 2016). For these reasons, we chose to test this model’s
accuracy to model patterns of and predict future human performance. We
hypothesize that XGBoost will capture more sophisticated relationships that
ARIMA models will struggle to handle. In addition, XGBoost has many
customizable parameters to meet modeler needs and although it is often used
with stationarity, it typically produces high predictive accuracy (Bitirgen &
Filik, 2020; Lv et al., 2021). Further, we test its ability to predict two
nonstationary human datasets.

METHODS

This study utilized data from two published (or under review) human
experiments: 1) Adaptive Strategic Reorientation of Attention (AStRA) and
Multiple Object Tracking and Communications tasks (MOTC).

ASTRA Dataset

Twenty-four participants completed different combinations of tasks from a
recently developed version of the Multiple Attribute Task Battery (MATB;
Fox et al), including tracking, communications, or monitoring (Figure 1).
The combinations consisted of either dual task or triple tasks, with some
combinations having the aid of an agent. The agent represents the cognitive
countermeasure designed to reorient the participant’s attention through
simple cues to enhance multitasking when deficits were detected (through
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brain activity). The participants completed each factorial combination for 6
minutes (Anonymous n.d.a).

Figure 1: Static image of multiple attribute task battery (MATB): monitoring (upper left),
tracking (upper right), and communication (bottom left) tasks.

Multitasking throughput (MT), a measure developed by Fox et al. (2021),
evaluates how well an individual performs on multiple tasks simultaneously
compared to a model of their own ‘perfect timesharing’ performance.
This individualized and nonparametric measure provides a single value
for multitasking performance. The perfect timesharing baseline is used for
comparison in computing MT; the baseline assumes task independence,
meaning efficiency to complete one task is not dependent on efficiency in
the other tasks, and unlimited capacity, meaning there are more resources
available than demanded to complete the tasks.

For our time series prediction purposes, we wanted to estimate how
MT varies over time. Fox & Houpt (2021) developed a Bayesian trial-
varying model of the capacity coefficient, and we utilized the same modeling
techniques as Fox & Houpt (2021) such that we assume a Weibull
distribution with a fixed shape for estimating both response times and
tracking error in all tasks, use a conjugate prior for computational simplicity,
use a squared exponential drop-off function to compute MT over time.
Like Capiola et al. (2024), Fox & Bowers (n.d.), we assume a stationary
shape parameter and allow the distribution’s scale parameter to vary across
individuals and time to estimate MT across trials. We calculated cost for
each task in the multitask contexts, and each had a different number of events
during the 6-minute timewindow due to the nature of the task. Generally,MT
decreases as time-on-task increased; this was especially evident in tracking
task performance.

MOTC DATASET

Sixteen participants completed a communication (Comms) and multiple
object tracking (MOT) task with equal priority (Figure 2). The researchers
manipulated the performance of the subject’s partner and how a graphical
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interface displayed feedback information to the subject. Participants were
asked to imagine they were a safety controller that relays safety information
to security forces who, in turn, ensure safety at a public venue. The
participants were instructed to complete the tasks remotely with eight
different partners. The partners and participants were assigned to monitor
one call sign for the Comms task and one quadrant for theMot task. Scenario
and tasks were adapted from previous work (Fox et al., 2024).

Figure 2: Depiction of Comms task (left) and MOT task (right).

Participants completed eight blocks of the four display types. Display types
were adapted from previous work (Capiola et al., 2024). Across the eight
blocks, the agent partner’s performance was manipulated with equal low
and high-performance conditions. The participants could respond to their
partner’s call-sign and in their partner’s quadrant. The partner could do the
same for the participant.

In this study, reaction time from both tasks was used to calculate Cost for
each person and task (Fox et al). When evaluating Cost across time there was
not a consistent trend over time; however, the value always varied throughout
the time trial.

Building the Model

The authors utilized the tseries package in R (Trapletti & Hornik, 2018)
to assess if the data were stationary and repeatedly differenced the data
to become stationary as necessary. This was completed at the subject and
condition level. Then, we fit parameters for each model. To do this we used
a 70/30 split data for training/testing, respectively. For the ARIMA models,
data was ordered by time. In the XGBoost Model, data was randomized.

ARIMA Model

Since we differenced the data and made it stationary as our first step, we set
the integrated ARIMA parameter to 0. To find the optimal choice for the
remaining two parameters, we used a joint grid search ranging from zero
to five (Velicer & Fava, 2003) to find the most probable p and q values.
The Akaike Information Criterion (AIC) value and Root mean squared error
(RMSE) assessed the performance of the models. The chosen parameters
minimized these values.
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These performance metrics were chosen because RMSE is the
recommended performance metric for XGBoost and by making this choice it
allows both models to be assessed using the same metric. Additionally, AIC
is a metric often used for assessing ARIMA performance, and it is used to
compare the current models in a similar way to past research.

XGBoost Model

XGBoost offers a wide range of customizable parameters grouped into
general, booster, and learning task parameters. General parameters determine
the overall function of the model. We used the default gbtree booster based
on decision trees as the base learner. Booster parameters influence how
the model performs each boosting iteration, allowing for fine tuning. Tree
booster models have a wide variety of options, such as those we used: mtry,
min n, tree depth, learn rate, loss reduction, and stop iteration. Learning
task parameters allow users to define a unique loss function and establish a
chosen eval metric. We did not use a unique loss function for our datasets.
We selected RMSE and R2 as an evaluation metric.

To tune the parameters outlined above, we used the tidymodels package
in R (Kuhn & Wickham, 2020), designed and specialized to create robust
models and allowed us to tune and compare the best parameters. V-fold cross-
validation, or k-fold cross-validation, is a method that randomly splits the
data into V groups of similar sizes called folds. The resample of the analysis
data consists of V-1 of the folds, but the assessment set contains the final
fold. There are no repeats in basic V-fold cross-validation, and the number
of resamples equals V (Frick et al., 2024). For our models, V was set to 5
and size set to 150. We chose these numbers because they were within the
suggested range but were not too computationally expensive (Berrar, 2018).

We created and tested both ARIMA and XGBoost models and compared
performance using four performance metrics. Root mean squared error
(RMSE), Mean absolute percent error (MAPE), Mean absolute error (MAE),
and mean absolute scaled error (MASE). R2 was calculated for XGBoost
models to evaluate the fit of the model. Example plots of data are provided
in the results section below.

RESULTS

Performance Metrics

In the AStRA dataset, the ARIMA model outperformed the XGBoost model
in almost all conditions. In some performance metrics, the XGBoost model
had conditions where the performance metric was lower, meaning XGBoost
was the ideal model for that condition. MAPE is the average absolute
percentage difference between predicted and actual values. MAPE describes,
on average, how far off the model’s predictions are from the actual values. For
the MAPE performance metric, all values were greater than 50 %, which is a
poor value for this metric. Values between 10 and 20% are considered good,
with models less than 10 % considered highly accurate models (Hyndman &
Koehler, 2006). However, in some conditions, XGBoost had lower values.

In the MOTC dataset, the ARIMA model outperformed the XGBoost
model in most conditions for all performance metrics. MAE measures the
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average magnitude of errors between predicted and actual values without
considering the direction of the errors (Hyndman & Koehler, 2006).
XGBoost was lower in the one condition for the MAE performance metric,
and one in the MAPE performance metric, although both models across
all conditions had scores greater than 50% for this metric. MAPE values
can be as low as 0%, although most are above 1%. RMSE scores were
very low (indicating high predictive performance) across both models for all
conditions.

R2 relays information about the goodness of fit for the XGBoost model.
In the AStRA dataset, all conditions were 0.97 or higher except for one
condition, which included the tracking and monitoring tasks. R2 was both
high (.80) and low to predict MOTC performance. Figure 3 shows an
example of the ARIMA (top) and XGBoost (bottom) model predictions
for one participant’s data in one condition of the AStRA dataset. XGBoost
models provide predictions for the whole dataset, whereas ARIMA models
only provide predictions for the last 30%.

Figure 3: ARIMA (top) and XGBoost (bottom) predictive model for one condition in
dataset 1.
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DISCUSSION

In this work, we explore the performance of two time series models
in predicting values in two human behavioral datasets. We sought to
fill the gap in the literature pertaining to time series analysis within
psychology. Throughout this study, we verified our computational methods
and demonstrated that 1) time series analysis can be utilized in human
behavioral data to make predictions, 2) both models in this paper can be
utilized for such analysis, 3) human behavioral data must be made stationary
with these models, leading to loss of trend and data. To our knowledge, this
is the first study to compare similar models to those mentioned above for
predictive modeling in psychology.

This study demonstrated that these models make accurate predictions, as
indicated by most performance measures used. Despite ARIMA having better
performance scores, XGBoost also performed at a proficient level. In future
work, the XGBoost models can be refined to train a more extensive array
of models across a larger grid of parameters to improve model accuracy.
Furthermore, with a larger sample size XGBoost may have performed better
than ARIMA. Both models had a 70/30 train/test split. However, the ARIMA
model only predicted the last 30% of the data and XGBoost predicted
a random 30% pulled from the full dataset. Therefore, a direct model
comparison may be misleading. For instance, if time dependencies between
the ARIMA datapoints are easier to predict (i.e. less variance and violate
periods and more predictable patterns) its performance metrics may be
artificially higher. MAPE values were poor for all models in every condition;
this may be due to the values being close to zero, high variability in the data,
or outliers (Hyndman & Koehler, 2006).

Previous research suggested a gap in psychological analysis methods for
longitudinal data that could benefit from time series analysis, specifically
predictive modeling. Previous work suggests that advances in time series
could lead to near real time monitoring (Parpoula, 2024). Dynamic time
series modeling in real-time would inform adaptive automation, feedback,
and display optimization to enhance user performance and experience.
Although currently time series analysis faces limitations in this field. Human
behavioral data often is not stationary and must be made stationary to
utilize these models, leading to a loss of trends that are critical to making
the most accurate predictions for these complex and dynamic systems. For
example, in the AStRA dataset all conditions and datasets had a downward
trend not observed in the ARIMA and XGBoost models due to differencing.
To remedy this and strive toward near real-time models, future work can
aim to develop models that capture the trends observed in these data types
(Parpoula, 2024).Work by Schumacher et al. (2023) also describes the nature
of dynamic cognitive constructs such that they are affected by more than
static task demands. Removing the trend from our datasets may have affected
the quality of our predictions, and a model tailored to this type of data
would elevate predictive performance and make models more informative
for interface enhancement. Superstatistics models offer a way to manipulate
both short- and long-term parameters in machine learning models to better
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capture the nonstationary data. We suggest that future work could create a
superstatistic model and utilize a gradient boosting model to improve model
performance. Future work may build from our findings to push the field
closer to near real-time monitoring and inform interface design based on user
performance over time. This study is one of the first steps in meeting this goal.

CONCLUSION

Time series is an effective instrument for employing past data points to either
understand trends among a dataset or predict future values. Time series data
sets possess dependencies between observations that allow different modeling
techniques to capture those relationships. This type of analysis has a broad
scope of uses and disciplines. However, the use of time series analysis remains
limited in psychology. We sought to fill the gap by testing ARIMA and
XGBoost to predict human performance over time in two studies. Our work
describes how the models vary in their customization, complexity, and test
their ability to capture fluctuations in human performance over time.

Our research evaluated a traditional (ARIMA) and a machine learning
(XGBoost) model to accurately predict human performance data over
time. We found both models performed well above chance, but ARIMA
consistently outperformed XGBoost in this use-case. Future research should
investigate the use of incremental models, which may capture individual-level
trends that could better adapt user’s display, provide individual- or team-
level feedback, or administer enhancement techniques to elevate the user’s
efficiency.
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