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ABSTRACT

Much ink has been spilled recently on the existential risks and potential of Artificial
Intelligence. Between breathy utopian think-pieces and apocalyptic proclamations
of the end of meaning in human life, an entire spectrum of outlooks muddies the
waters on insight-driven and human-focused paths forward. While philosophical
musings and abstract plans are prevalent, relatively little attention has been paid
to underwriting integrative deployment as a problem which yields to analysis.
The question ‘when should an autonomous system step in’ is typically framed
as demanding a comprehensive world-model of the human subject- oppositional
defiance and counter-picking make this approach undesirable, turning the human and
AI against one another. Instead, by combining operationalization from psychology,
Pareto optimality from economics, norm-based stability from robust controls, and
shortest-path algorithms from graph theory, we are able to present mathematically
robust conditions under which heterogenous systems provide superior performance
to unitary agents, guaranteeing a lower bound on efficacy of joint human/AI teams
endorsed by relative advantage. We also derive implicit conditions under which
such relationships hold, finding them to be of geometrically increasing scope
as task complexity increases. Finally, we demonstrate these relations are not
merely theoretical, using sample tasks with adversarial complexity to challenge the
assignment paradigm, and find the results to remain within an order-of-magnitude of
the predicted robustness condition.
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INTRODUCTION

Research on integration between humans and autonomous systems has
consistently shown that joint teams exhibit superior performance to
homogeneous ones (Crandall, 2002).Most interesting through our lens, these
reports exist across widely varying domains: (Feng, 2016) for UAV control;
(Sharma, 2023) in mental health services; (Hitsuwari, 2023) in poetry.
(Li, 2024) outlines how the effectiveness of heterogeneous teams is one of
the key factors enhancing their acceptability to users.

However, there are notable hurdles to adoption of such approaches,
in spite of the demonstrated benefits. (Vassilakopoulou, 2023) implies
inertial thinking is one such limit. (Ulfert, 2024) suggests novel integration
mechanisms are likely necessary. Supplying rigorous and well-founded
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rationale which endorse the advantages of Human/AI teams is therefor
critical for guidance of AI adoption towards the benefit of humanity as a
whole.

Several investigations of Human/AI interactions in more abstract contexts
suggest causativ mechanisms: brainstorming (Memmert, 2023), military
decision-making (Vold, 2024), and social collaboration (Westby, 2023),
highlight critically that AI systems assist in reducing cognitive load on
humans, precisely as other information technologies have historically.

Though there is ample work on engendering this effect, less examines
the robustness of it. (Aghion, 2017) addresses this concept in an economic
sense. Notably, they leverage the concept of relative advantage to suggest that
asymmetric displacement of workers by automation systems can be counter-
intuitively harmful to industries- a pattern observed with other forms of
automation, already.

There is generally an optimum which can be achieved by examining
the combinations of autonomous and human controls (Nichols, 2015).
Comparable to the economic concept of ‘comparative advantage’, when
robots and humans have asymmetric competencies, even if one agent has
an absolute performance advantage over the other performance gains are
possible when dividing total labor (Kim, 2011). A rigorous discussion
of identifying autonomy levels can be found in (Barber, 1999). Notably,
(Fu, 2015) presents a method using temporal logic to construct Pareto-
Optimal policies, indicating that such optimal policies must exist in mixed
autonomy systems.

Based on the results in these works we are able to infer, in conjunction with
the reported efficacy of joint Human/AI systems, that there is an optimization
problem embedded in the task of analyzing a mixed autonomy system.
Knowing that this is the case, we can proceed with our analysis of the joint
team as a problem of identifying conditions under which a non-extrema of
autonomy level (all machine, or all human) produce optimal solutions.

In this paper, we use similar reasoning, framed in terms of the analysis of
planning and levels of autonomy in a joint system, to address the deeper
question of the robustness of the observed effect whereby heterogeneous
systems outperform homogeneous ones. By considering the joint task as a
graph of subtasks, we are able to apply concepts from robust controls to
derive conditions under which this effect holds, and incidentally indicate the
breadth of them. This, critically, demonstrates that the observed performance
advantages of the heterogeneous are not outliers, but in fact the norm.

VARIABLE AUTONOMY

We will consider an arbitrary task, in the abstract, to be modeled by a task
graph comprised of subtasks, noting that any sub-task may theoretically be
decomposed in the same way. Our objective, then, is to optimize the expected
cost for achieving the objective with respect to the path from the starting
state to the goal state. As such, we are able to evaluate a locally optimal
path rather than every possible solution, and determine conditions when this
locally optimal path is also globally optimal.
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Definitions

We presume a task which proceeds from some start state, S, to a goal state G
with an intervening set of subtasks drawn from K-many in total, which effect
the transition from S to G. The relationships between the different subtasks
is represented by the task graph, TG, a directed graph in which each vertex
represents a subtask and the edges represent transitions from one subtask to
another.We assume that this graphmay contain many variable paths between
S and G, and be hierarchically ordered.

Each subtasks may be accomplished by a human via at least one manual
module Mi, or by the autonomous system via at least one autonomous
module Ai. As each subtask in TG has at least two modules that may be used,
the number of states is doubled, and the number of paths to be evaluated
grows asO(2K). As such, the issues associated with the computation of MDP
policies can be clearly seen.

Our goal is determine which subtasks (denoted abstractly as Pi, note
that the i index here does not refer to execution order, but is instead a
subtask label) should be executed by an operator and which should be
executed autonomously. The autonomy level, denoted AL for this algorithm,
parametrizes how many subtasks are executed autonomously. In this model,
achieving the task means progressing the system from the initial state S via a
subset of subtasks from the start to the goal. In this way, we can represent a
solution for the task as a chain in TG.

We seek the optimal solution given someAL. As there areK-many subtasks,
we will have K + 1 levels in total, including AL = 0 at which all subtasks are
marked for manual execution.

We also define an autonomy level plan, ρ to be a selection, for every subtask
in TG, whether the subtask will be executed autonomously or manually.
Each autonomy level plan represents which subtasks will be executed
autonomously and which manually. For example, the autonomy level plan
forAL = 2 for the TG represented in Figure 1 might be ρ2 = {A,M,M,M,A,M}

Note that a plan and a solution are not synonymous. The problem of
determining the optimal autonomy level plans for a task is posed as the
optimal order in which modules are toggled from manual execution to
autonomous execution- recognizing that the process of identifying an optimal
solution with these allocations is a distinct combinatoric problem.

Cost Function

In this section, we define a cost, µ, such as completion time, probability
of success, operator fatigue, etc. which determines relative efficacy of task
performance. µ(Mi) represents the cost associated with the manual module
associated with the ith subtask, µ(Ai) the same for the autonomous.

Let X, Y, or Z be arbitrary modules of either manual or autonomous type.
Additionally, · is the operator representing the method of combination of
multiple µ costs into a joint cost. We stipulate that µ meets the following:

Condition 1: Costs are non-negative, as otherwise it may be possible to
construct an autonomy level plan with infinitely decreasing cost; µ(X) ≥ 0.
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Condition 2: When combining costs, the joint costs are monotonically
increasing or decreasing: µ(X) · µ(Y) ≥ max(µ(X), µ(Y)) or
µ(X) · µ(Y) ≤ min(µ(X), µ(Y)).

Condition 3: The cost function is transitive, ensuring that the effect of a
module’s independent cost on the cost of any autonomy level plan is the same;
µ(X) · µ(Y) = µ(X) · µ(Z)→µ(Y) = µ(Z).

Joint Expected Cost

A direct approach would be to evaluate the least-cost path for every
possible ρ. However, this would require evaluating 2K variants, which is
computationally intractable. To ameliorate this, we evaluate whether each
module should be executed manually or autonomously on basis of the effect
doing so has on the cost as seen from the starting state, using an expected
cost model.

In this model, grouped transitions between subtasks represent outcomes
that are related in probability. Figure 2 shows the set of transitions leading
from the example subtask N to either M or P, with probability of the
event and expected cost of the result, and a mechanism for incorporating
subtask failures, a failure cost CFNX..Z. Using this model, we can construct
an alternative expected costs of subtask execution, denoted as E(N|N..Z),
including not only µ(N), but also a combination of CNx, which are the
expected costs for the subsequent subtasks:

(E(N) | NX..Z) = µ(N)+
∑
∀x∈X..Z

pNxE(x)+

1−
∑
∀y∈X..Z

pNy

CFNX..Z (1)

To then calculate the joint cost associated with the subtask N itself, we can
utilize the minimum such calculated expectation:

E(N) = min ({E (N | NX1..Z1) ,E (N | NX2..Z2) , . . .}) (2)

We can resolve this calculation by working backwards in TG from the goal.
G itself has no subsequent subtasks and is the terminal state, so its expected
cost can be considered zero. If E(SAL) represents the expected cost at S, given
an autonomy level AL, the cost change to a higher autonomy level AL + 1 can
be written as:

1E(S)AL = E
(
SAL+1

)
− E

(
SAL

)
(3)

we can then identify which subtask Pi will have the most negative change
in cost when automated, and update the next autonomous level plan
accordingly:

ρAL+1i
[i] = min

Al

{
1E(S)AL

}
(4)

The change in cost min{1E(S)AL} should be negative, as we seek to find an
optimal autonomy plan, however, it is possible that some point, all remaining
changes induce an increase in expected cost. This point is naturally the local
minimum in 1E(S), and we define it to be the optimum autonomy level.
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ANALYSIS

In the prior section, we utilized the joint expected cost at the system starting
state as an objective function to be optimized in terms of the autonomy levels.
A natural result of the construction of the objective function in this way being
that the lowest cost ρ thus identified was a local minimum expected cost
autonomy level plan for TG. In this section, we will analyze this algorithm
to identify certain conditions under which this local optimum is also a global
optimum. This analysis then allows us to identify the conditions under which
the joint plans are robustly optimal.

For the purpose of clarity, we construct a permutation i→j which
re-indexes the subtasks such that they are labeled in the ordering by ρ. Using
this ordering, we can write out a proxy function for the cost of a plan:

µρ (AL) = µ
(
ρAL

)
=
(
µ (A1) · µ (A2) · . . . µ

(
AAL

))
·
(
µ
(
MAL+1

)
· µ
(
MAL+2

)
· . . . µ (MK)

) (5)

Because of conditions 1 through 3, this function will possess the
same differential landscape as 1E(S). We define this function of manual
vs. autonomous module cost, fH, by plotting points (µ(Aj),µ(Mj)):
fH(µ(Aj)) = µ(Mj).

We can further define an uncertainty function 1µ(Mj), to represent the
variance in the costs of the manual module j relative to the autonomous
modules. Convolving this uncertainty with fH calculates a statistical model
for the cost over µρ(AL) as a function of AL:

ln
(
µρ (AL)

)
=

AL∑
j=0

ln
(
µ
(
Aj
))
+

∫ K

AL+1

K∑
l=AL+1

δµ
(
Mj
)
ln
(
fH
(
µ
(
Al
)))

dj

(6)

This allows us to use the derivative operator to examine cost-change
behavior of µρ in terms of AL. Applying the operator to both sides and re-
arranging the terms, the derivative of the cost function µ evaluated at the
autonomous subtask AL. Seeking extrema, we can set µ′ρ = 0 to obtain:

µ
(
AAL

)
ln
(
fH (µ (AL))

) ∫ K

AL+1
δµ
(
MAL

)
dj = µ′

(
AAL

)
(7)

Equation 7 constitutes an implicit relationship describing the rate of
change of the cost of an autonomy level plan as a function of AL. In essence,
this equation quantifies relative advantage in our model, and thus naturally
mirrors the analysis in (Aghion, 2017).

Though a monotonic relationship between µ(Aj) and µ(Mj) will allow for
direct optimal autonomy level plan identification, it is fairly unreasonable
to expect such regularity of real-world systems. However, Equation 9 is a
continuous optimization over cost but the actual autonomy level plan itself
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is a set of discrete categories. This suggests the possibility that a measure
of deviation from strict monotone behavior may be tolerable,if changes to
the function do not result in misidentification of which subtasks should be
performed autonomously.

Suppose we can select a monotonic envelope function ef, as illustrated in
Figure 1 and define the deviation for each subtask Pj as rj, the scale factor
required to transform the value of fH at a point to the corresponding point
on ef: ef(i) = rj fH(i).

Figure 1: Example envelope function for fH.

This transform introduces an inaccuracy in the cost function, and we can
determine conditions under which the modification causes misclassification
of individual modules.

Given ef(j) = rjfH(µ(Aj)), the change in cost for task j is given by
(1–rj)µ(Aj). For the subtasks which are affected by this change, we have a
‘new’ autonomy level plan, ρ’, determined from ef rather than fH with cost
and cost changes given by:

1µ =
(
1− rj

)
· µ(ρ)2

AL∏
l=0

µ
(
Al
)

(8)

µ(ρ’) = rjµ(ρ), and 1µ=(1–rj)µ(ρ). We can estimate the expected change
in cost as:

(
1− rj

)
· µ(ρ)2

AL∏
l=0

µ
(
Ml
)−1

< rj · µ(ρ) (9)

Which produces a condition under which the change does not lead
to misclassification:Then, for multiple deviations from monotonicity with
change ratios rj1,rj2,... rjs, the condition for optimality is given by:

s∏
l=0

1− rjl
rjl

<

(∏AL
l=1 µ(Mj)

µ(ρ)

)s
(10)
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EXPERIMENTS

To experimentally validate the predictions of our analysis, we have applied it
to optimization of Human/Robot interaction on a physical robot performing
a sanitization task. We collected operational data comprising subtask costs,
in terms of time and the probabilities of successful completion of each subtask
autonomously and with 25 human operators.

We decompose our disinfection task into seven sub-tasks: Target
Identification, Alignment of robot to target, Corrections to object tracking,
Assignment of kinematic bounds,Measurement and tracking mode selection,
Placement of end-effector, and Tracking of coverage trajectory. The data are
collected throughout each trial by recording the actions of the user via UI
scripting. Time costs are measured as simple duration from beginning one
task to completing it. Failure chance is measured in two ways- first, all
instances in which the robot system encounters a significant fault, such as
a tracking excursion in which the target is fully lost. For human execution,
cases where the operator must re-try are marked as a failure state for that
specific subtask module.

Table 1: Average performance metrics.

Autonomous Manual

Module Prob. Time σ Prob. Time σ

Target Id 0.90 24s 0.27 0.37 36s 5.7
Alignment 0.50 17s 0.25 0.32 35s 3.8
Object track 0.41 13s 0.22 0.16 49s 1.6
Kinematics 0.67 15 s 0.15 0.23 47 s 1.5
Tracking 0.36 24s 0.12 0.15 13s 2.5
Placement 0.16 11 s 0.10 0.27 15 s 0.9
Coverage 0.13 21 s 0.08 0.15 13s 2.6

Table 2: Derived typical autonomy level plans.

Costs
AL 1 2 3 4 5 6 7

Average (all) 69.5 56.3 47.1 42.2 42.3 44.7 50.7
Validation Trials 59.1 54.6 49.8 46.5 50.2 45.2 50.7
Lowest Performer 78.7 56.9 48.3 48.5 49.0 49.9 50.7
% diff. 15% 3% 6% 10% 19% 1% -

Table 1 shows the probabilities and execution times for each
of the subtasks averaging over all samples, along with the
variance for each. On Table 2, we see that the autonomy levels
determined have a minimum cost of 42.2 at AL = 4. Also
shown is a low-performing user with an optimum at AL = 3.
We solve an MDP implementation of this task with the reward function
defined by the time cost of each step, Ra(s,s’) = −1t. With this method,
we find an optimum plan cost of 42.67s, a 1.1% error with respect to the
minimum time predicted. We can also, critically, use the data collected in
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our experiments to validate the robustness analysis. We construct estimates
of fH(j) by fitting curves, seen on Figure 1. Table 3 presents the details of
of Equations 9 & 10 for the average case and a low-performing user. In the
average case, we see that the equation has the minimum difference 0.12,
at AL = 4, identical to the prediction. Likewise, for the low-performer, the
nearest correspondence is at the determined optima AL = 3. This shows that
for both cases, the measured values in Equation 10 hold at the predicted
points.

Table 3: Applying theorem I.

Average Case Low Performer
µ′ µ ln

(
fH
) ∫

δµ 1 µln
(
fH
) ∫

δµ 1

1.33 0.14 1.18 14.93 16.26
1.71 0.26 1.44 11.26 12.97
2.09 0.82 1.26 0.25 1.83
2.47 2.34 0.12 0.56 1.90
2.85 1.31 1.53 0.59 2.25
3.23 1.08 2.14 0.44 2.78
3.61 1.44 2.16 0.62 2.98

Table 4: Applying theorem II.

Average Case Low Performer

µ
(
Mj
) (

1− rj
)
/rj 5µ(M/P)

(
1− rj

)
/rj 5µ(M/P)

2 0.0014 0.021 0.056 0.035
5 - 0.083 - 0.121
7.8 - 0.187 0.711 0.255
8.4 0.437 0.294 0.696 0.400
9 - 0.408 - 0.555
15 0.151 0.597 - 0.814
18 - 0.825 3.672 1.124

9.557 · 10−5 < 0.562 0.102 < 1.597

These curves are not strictly monotonic, as expected in real-world
situations, and thus present the chance to validate Equation 10. For each
subtask, we calculate the change ratio necessary to bring the fit function
into compliance with a monotone function. For those modules which are
non-conforming, the last row of Table 4 contains (1–r)(r–1), and the
corresponding ratio of autonomous to autonomy level plan cost. These values
show that in both the general and single-user case the robustness condition
is met by at least an order of magnitude.

CONCLUSION

In this paper, we sought to demonstrate with robust mathematical rigor the
advantages of Human/AI teams in efficacy over that of homogeneous teams
of only humans or only AIs. This work builds on the results referenced in the
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Introduction, in which many cases of superior performance was observed in
such teams- performance we sought to validate with an analytical framework.

Towards this end, we constructed a generalized model for joint task
accomplishment which frames the problem as assignment of subtasks rather
than seeking individual optimized plans. Using this analysis, we parametrize
the impact of relative advantage between the human and the AI, and plan
along a convex, optimizeable surface. Most importantly, we are able to show
that the conditions underwriting this optimization remit to robust bounds
which rely on the discrete choice in a task being performed by the human
versus the AI.

The key and critical insight from this analysis is that the condition
expressed in Equation 10 is of a geometrically decreasing nature in the
number of subtask steps- that is to say, the range of deviation from ideal
conditions widens as task complexity increases. This agrees with our early
observation that abstract tasks revealed the mechanisms by which joint
systems achieve superior potency. We thus infer that as a task becomes
increasingly complex, the probability that the solution of an arbitrary
problem is optimal at a joint plan increases geometrically.

These predictions are mirrored in the referenced works, however, we
validate them by examining a specific constructed task with the express
purpose of collecting the data required to examine all the quantities defined
within our framework. We find that these measurements match with our
predictions, and that the bounds thus established hold, to within an order of
magnitude of clearance.

We therefor draw the conclusion that not only is it an observable emergent
property that joint teams often out-perform unitary teams, but in fact a
natural conclusion of the mechanism of relative advantage between them.
The relative impact of cognitive loading is one such discrepancy, but as we
have seen the nature of that difference is less important than the difference
itself. The fact of existence of distinctions between a human mind and an
AI system itself guarantees, as is often observed within economic systems,
that a combination of contributions will naturally effect the strongest results.
Humans and AIs working in tandem are more effective for the same reasons
that international trade is more profitable than autarky.
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