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ABSTRACT

In this study, to automatically construct a virtual space with a high degree of freedom
of expression that reflects the spatial shape of the real space and the arrangement of
objects, we focused on the global shape of the indoor space without interior details
as the first step and constructed a PointNet-based autoencoder to extract the features
of the shape. To train the machine learning model, we used ScanNet++, which is
a 3D indoor space dataset converted into point cloud data. Feature extraction was
performed using two types of point cloud data: (1) point cloud data not used in the
training of ScanNet++, and (2) point cloud data of an indoor space obtained through
3D scanning of a real environment. Feature extraction was evaluated by comparing
the shapes of the input point cloud, restored output point cloud and distance error.
As a result, both the ScanNet++ data and the indoor space data were output as
rectangular shapes, and the general shapes of the walls and floors of the indoor space
were generally consistent, indicating that spatial features were extracted. However,
the interior furniture and other objects were removed. To investigate the applicability
of the model, feature extraction was performed using 3D objects with elliptical shapes
in an interior space. In future work, we will investigate the development of an
autoencoder that performs feature extraction by focusing on the local shape around
each point using a point-cloud convolution method, along with feature extraction
following region classification within the interior space.

Keywords: 3D point clouds, Feature extraction, Pointnet, Autoencoder, Scannet++, Virtual
space

INTRODUCTION

With recent advancements in extended reality (XR) technologies, such as
virtual reality (VR) and mixed reality (MR), XR has gained popularity not
only in the entertainment industry but also in the medical and welfare sectors.
VR provides a high degree of expressive freedom in virtual space because the
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entire field of vision is transformed into a VR image when the user wears
a head-mounted display (HMD). However, applying VR for practical use in
arbitrary locations remains challenging because VR images do not reflect the
actual surrounding environment. Moreover, the range of motion is limited
(Ishizaka et al., 2018). In contrast, while MR imposes fewer restrictions
on the range of operation, it is typically used for specific tasks, such as
superimposing virtual objects or digital information in real space. Therefore,
generating a VR space that accurately reflects the real-world environment in
real time—particularly in scenes where the shape of the space changes—is
essential. However, creating such a virtual space involves complex processes,
making it difficult to implement in a widespread, general manner. This
highlights the need for technology that can automatically construct a virtual
space with a high degree of freedom, such as tilting or expanding the space,
while still allowing the user to perceive the surrounding environment.

Generally, 3D objects represent virtual spaces, typically in the form of
mesh data composed of points and surfaces. With the widespread use of
3D measurement devices, such as light detection and ranging (LiDAR), 3D
point cloud processing technology has become increasingly important for
generating mesh data. 3D point clouds, which describe shapes as sets of 3D
points (x, y, and z), provide highly accurate information about the real space’s
geometry and the positional relationships of objects. Recently, numerous
studies have focused on the automatic generation of 3D objects from 3D point
clouds, with generative models based on adversarial generative networks
(GANSs), a deep learning technique. Many adversarial networks, such as
I-GAN (Achlioptas et al., 2018), incorporate PointNet (Charles et al., 2017)
as an encoder for feature extraction, a deep learning method that addresses
the sequential inequality of point cloud data. Most evaluations of 3D point
cloud generation methods rely on open-source datasets containing large CAD
models across specific object categories, such as ModelNet (Wu et al., 2018).
However, these datasets primarily consist of object categories like chairs
and cars, and there is a lack of examples of deep learning or point cloud
generation using entire spaces—such as indoor or outdoor environments—
as datasets. Additionally, spatial objects, such as walls, floors, and furniture,
have different characteristics compared to individual objects, making it
challenging to apply features learned from the above datasets.

Therefore, to automatically construct a virtual space that reflects the
spatial layout of the real environment and the arrangement of objects,
this study focused on the global shape of indoor spaces as the first step.
Specifically, it examined whether an autoencoder using PointNet could
extract spatial features from real-world spaces. The machine learning model
was trained on ScanNet++ (Yeshwanth et al., 2023), a 3D indoor space
dataset converted into point cloud data. Feature extraction was performed
using two types of point cloud data: one set of point cloud data not used
in the training of ScanNet++, and another set obtained by scanning real
indoor spaces in 3D. Spatial feature extraction was evaluated by comparing
the shape of the input point cloud with the restored output point cloud, as
well as by assessing the distance error.



Construction of a PointNet-Based Autoencoder Using a 3D Scene 19

DATASET CREATION FOR SPATIAL FEATURE EXTRACTION

In this study, the ScanNet++ indoor spatial 3D dataset was used for training.
ScanNet++ is a large-scale dataset that integrates the 3D geometry of a room
with color information, ensuring high-quality and high-accuracy geometric
data. The dataset contains over 280,000 images and 3.7 million RGBD
frames across 460 scenes, captured using a high-end laser scanner with sub-
millimeter resolution. For this study, mesh data from 323 scenes were used
to train a machine-learning model. The maximum room dimensions in the
dataset are 22 m (width, x), 22.5 m (depth, y), and 6.3 m (height, z).

Conversion of 3D Objects to Point Cloud Data

To convert 3D objects (mesh data) into point cloud data, the Poisson disk
sampling method (Yuksel, 2015) was initially applied. This method controls
the minimum distance between sampled points, ensuring that it does not
fall below a specified value. As a result, all points in the sampled cloud
were separated by a uniform distance, enabling sampling with high spatial
uniformity (Figure 1).

Conditions for Dataset Creation

The conditions for dataset creation were as follows: the number of input
points was 10,000; the number of data points was 323; the dimensions of
the latent variable were 128; and the number of layers was three.

During training, normalization was applied within the range of 0-1 based
on the maximum and minimum lengths of the interior space for each dataset.
The dataset was divided into 90% training data for weight optimization and
10% test data to evaluate generalization performance.

CREATING A POINTNET-BASED AUTOENCODER

Creating an Autoencoder

An autoencoder is a neural network algorithm designed to compress (encode)
an input point cloud int a lower dimension, extract feature vectors in the
latent space, and extract features from the feature vectors to restore (decode)
an output point cloud similar to the input. This mechanism is commonly used
in applications such as image denoising, anomaly detection, clustering, and
data generation. For feature extraction using a 3D point cloud, the PointNet
network structure was employed as an encoder to extract feature vectors.

3D Object 3D Point Clouds

Figure 1: Conversion from a 3D object to 3D point clouds.
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PointNet

Point Net is a deep learning method for point clouds that accepts point-
cloud data as direct input. The 3D point clouds lack an inherent order or
grid structure for any of their data elements. As shown in Figure 2, even
if two points in the 3D point cloud are swapped, the overall shape of the
cloud remains unchanged. This type of data is referred to as out-of-order
data, which is difficult to handle with traditional deep learning methods.
PointNet addresses this challenge by introducing symmetric functions that
ensure the output remains invariant to the order of the input data. The
PointNet architecture combines a shared Multi-Layer Perceptron (MLP)
and max pooling. In shared MLP, the same MLP is applied to each point
along the channel direction. Let f(p, 6) (where p is a 3D point and 6
is a weight parameter of MLP) be a shared MLP. For example, when a
3D point cloud (py, P2, --+» Dy -+ s pj» -+ P,) is input, the output is

(F (1) £ (p2)s s FB) 5 £(8) >+ » £ (P))- Max pooling is then

used to aggregate features from all points in the point cloud, with this pooling
operation applied channel-by-channel. By using the maximum value as the
pooling function, the result remains unchanged regardless of the input point
order, ensuring that the output is independent of point order. As described,
the combination of shared MLP and max pooling generates the same output
regardless of point order, enabling the construction of a symmetric function
via a neural network. The network structure is illustrated in Figure 3.
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Figure 2: Unordered 3D point clouds.
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Figure 3: Symmetric function of PointNet.
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Machine Learning Model Structure

The structure of the machine learning model and its hyperparameters were
set based on the PointNet-based autoencoder proposed by Achlioptas et al.
(2018). Figure 4 presents the structure of the machine learning model, with
a three-layer example. The encoder consists of three 1D convolutional layers
with batch normalization, followed by the application of the ReLU activation
function after each layer. Convolution was performed on the coordinates and
features of each input point using a shared weight across all points. Max
pooling was then applied to aggregate the global features of the point cloud,
producing a feature vector. The decoder consisted of three fully connected
layers, excluding the output layer, with the ReLU function applied after each
layer. The model was trained to minimize the Chamfer Distance between the
input and output point clouds. When the shapes of the input and output point
clouds align, appropriate feature extraction is achieved. The loss function for
training was the Chamfer Distance, the optimization method was Adam, the
batch size was 32, and the learning rate was set to 0.0005, with training
conducted over 500 epochs.

EVALUATION OF SPATIAL FEATURE EXTRACTION

Evaluation Methods

Two types of data were used for the evaluation: ScanNet++ point cloud
data not used in training the machine learning model and indoor space point
cloud data obtained by 3D scanning of the real space. The indoor space point
cloud data from ScanNet++ are shown in Figure 5. The real-space indoor
point cloud data were acquired using an iPad Pro 2nd generation (Apple
Inc.), equipped with a direct flight (dToF) LiDAR sensor and a 3D scanning
application (Scaniverse). The dToF method measures distance by detecting
the time difference between the light emitted from the source and the light
reflected from the object, until it reaches the sensor. The acquired point cloud
data were exported as a 3D object in Scaniverse, then sampled to 10,000
points (the required number of input points) using the Poisson Disk Sampling
method. Figure 6 illustrates the process from data acquisition to sampling.
The interior space is approximately 5.2 m wide, 2.8 m high, and 8 m deep.
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Figure 4: Structure of the autoencoder machine learning model.
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The point cloud data were normalized to the range of 0-1 based on the
maximum and minimum dimensions of the rectangular point cloud data in
the dataset and then input into a trained autoencoder for restoration. The
normalization parameters were later used to denormalize the restored output
point cloud.

To quantitatively evaluate the precision of the restoration, the input and
restored output point clouds were visualized, their shapes compared, and the
distance error calculated. The input point cloud of the autoencoder was
the source point cloud S, and the output point cloud after restoration was
the target point cloud T. Mapping was performed using the kd-tree method,
which is the nearest-neighbor search method. Next, the distance between the
points was calculated using the mean squared error (MSE) [m?], as follows:

1 n
MSE = lIps, = qr,13[m°] (1)
i=1

Here pg; denotes the i-th coordinate vector of the source point group, gr;
denotes the i-th coordinate vector of the target point group, and # denotes
the overall number of points. Figure 7 shows the sequence of the evaluation

methods.

Figure 5: ScanNet++ indoor spatial point cloud data for evaluation.

Camera with LiDAR scanner

Figure 6: Flow from acquisition to sampling of indoor spatial point cloud data.
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Figure 7: Flowchart of evaluation methods.
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Evaluation Results

The results of visualizing the shapes of the input and output point clouds
and the distance error (MSE), are presented. Figure 8 shows the results for
the ScanNet++ data. These results indicate that the general shapes of the
interior space, such as walls and floors, were consistent, and spatial features
were successfully extracted; however, interior furniture and other objects
were omitted. Figure 9 shows the results for the indoor space data. The
results show that the general shapes of the walls and floors were consistent
in some areas, but scattered in others. A comparison of the MSE between
the ScanNet++ and indoor space data showed that the error for the indoor
space data was larger than for the ScanNet++ data.

DISCUSSION

Visualization and MSE Results

Both the ScanNet++ and indoor space data were output in a rectangular
shape, with the general shapes of the walls and floors being consistent.
This indicates that spatial features could be successfully extracted; however,
interior furniture and other objects were omitted. This suggests that the
model can extract the global shape of an interior space by focusing on the
walls and floors, while disregarding the finer details of the interior through
training with realistic point cloud data.

Input Output

MSE: 0.0183 m?

Figure 8: Evaluation results of ScanNet++ data.

Input Output

MSE: 0.179 m?

Figure 9: Evaluation results of indoor space data.

Two possible reasons for this outcome are that first, the training data
were sampled using the Poisson Disk Sampling method, which maintains
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a constant distance between points across the entire room. This sampling
approach may have led to the exclusion of smaller objects like furniture.
Second, the walls and floors share similar shapes across different rooms,
making them easier to learn compared to the more varied interior furniture
Therefore, feature extraction primarily focused on the global shape, omitting
the interior details of the space.

To reproduce the entire room, including both walls, floors, and furniture,
future work could involve classifying and separating these components before
performing feature extraction. Specifically, after classifying walls, floors, and
furniture (as shown in Figure 10), the number of points for the furniture
should be increased relative to the walls and floors. Using an autoencoder
with PointNet to extract features for each object separately could improve
the representation of the entire room.

The PointNet used in this model generates a single vector representing
the entire point cloud’s features. To ensure the features are independent
of point order, the entire point cloud’s features were aggregated through
global pooling. However, this approach only processes the data as a
whole or as individual points, making it difficult to capture local features
effectively. Neural networks in image processing have successfully captured
local features through convolution, suggesting that similar techniques could
enhance 3D shape extraction. By focusing on local shapes around each point,
it may be possible to improve feature extraction beyond the capabilities of
pure PointNet. Thus, we are considering the use of point-cloud convolutional
methods, such as Edge Conv (Wang et al., 2019), for future training.

Feature Extraction for Different Room Shapes

Both ScanNet++ and indoor space data featured rooms with corners and
rectangular shapes. However, real-world rooms come in various shapes, such
as elliptical and triangular. To understand the limitations of the model, we
created a 3D object of a room with an elliptical shape using Blender, a 3DCG
software bank, as shown in Figure 11. The point cloud data were converted
and feature extraction was performed using the PointNet-based autoencoder.

Figure 10: Example of region classification (adapted from Yeshwanth et al., 2023).
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Figure 11: Creation of an elliptical-shaped interior space using Blender.

Input Output

Figure 12: Results of the evaluation of interior space data with an elliptical shape.

The results, shown in Figure 12, indicate that the lower right portion
of the output point cloud accurately extracted features, but other regions
were scattered, with lower feature extraction accuracy compared to the
ScanNet++ data. Therefore, the model developed in this study is more
suitable for analyzing rectangular room shapes, but not for more irregular
room geometries.

CONCLUSION

This study aimed to automatically construct a virtual space that reflects
the spatial shape of a real environment, focusing on the global shape of
indoor spaces without interior details. We constructed a PointNet-based
autoencoder for feature extraction, training the model on ScanNet++, a
3D indoor space dataset converted into point cloud data. Feature extraction
was performed using two types of point cloud data: one set that was not
used for training ScanNet++, and another obtained by 3D scanning a real
indoor space. The feature extraction was evaluated by comparing the input
and restored output point clouds, along with calculating the distance error.
The results showed that both the ScanNet++ and indoor space data were
output as rectangular shapes, with the general shapes of the walls and floors
consistent, suggesting the extraction of spatial features. However, interior
furniture and other objects were omitted. This suggests that the model can
successfully extract the global shape of interior spaces through training with
real-world point cloud data while excluding interior details.
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Future work will focus on creating an autoencoder that extracts features by
focusing on the local shape around each point using point-cloud convolution
methods. Additionally, we plan to perform feature extraction after classifying
interior elements, such as furniture and walls, within the indoor space.
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