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ABSTRACT

This study aimed to estimate intellectual productivity during a computational task
with cognitive load using electrocardiogram (ECG) data. In the experiment, eight
participants performed a continuous addition task during which their intellectual
productivity and ECG data were measured. A model for estimating intellectual
productivity from the ECG data obtained during the experiment was created using a
convolutional neural network (CNN). Two types of models were developed: individual
models for each participant and an overall model using data from all participants. The
evaluation metrics for the models were the MAPE and R. For the overall model, all the
data from each participant were used as test data. A paired t-test was conducted on the
evaluation metrics for both individual and overall models. The results show that for
the MAPE, the individual models were significantly lower at the 1% significance level
and that for R2, the individual models were significantly higher at the 5% significance
level. In addition, the values of each metric suggest that it is possible to estimate the
intellectual productivity of each participant using ECG data.
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INTRODUCTION

In recent years, the proportion of tasks involving cognitive load has increased
in Japan owing to the advancement of information technology. This increase
has led to an increase in long working hours with cognitive load, which
has become a significant issue. Improving intellectual productivity is crucial
to reducing the time spent on cognitively demanding tasks. Research
on productivity enhancement suggests the effectiveness of motivation
improvement systems through the visualization of work efficiency (Daniel
et al., 2024). According to previous studies, providing positive feedback
that displays the amount of work completed by an individual can help them
evaluate their actions, enhance their willingness to improve, and provide a
sense of reassurance and achievement to the recipient, which could increasing
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their motivation. However, the direct measurement of the efficiency of
cognitively demanding tasks remains challenging.

Therefore, research has been conducted to evaluate productivity by
capturing changes in cognitive function using electrocardiography (ECG).
A study that used heart rate variability indices to detect cognitive function
changes (Tsunoda et al., 2016) reported that estimation was possible for 70%
of the participants but difficult for the remaining 30% owing to individual
differences. In addition, the current challenges for practical applications
include large estimation errors, difficulty in personal optimization owing to
the creation of a generalized model for all participants, and the challenge
of real-time estimation when using heart rate variability indices. To address
these challenges, potential solutions include improving the accuracy using
deep learning techniques, developing personalized models, and enabling real-
time estimation using raw ECG data. Therefore, the objective of this study is
to develop an intellectual productivity estimation model based on the ECG
of each participant using machine learning. A convolutional neural network
(CNN) was used to extract features from time series data to construct an
intellectual productivity estimation model.

CONTINUOUS ADDITION TASK EXPERIMENT FOR ESTIMATING
INTELLECTUAL PRODUCTIVITY

In this experiment, a continuous addition task modeled after the Uchida–
Kraepelin test (Uchida, 1957) was created to estimate individual intellectual
productivity using ECG data. During the task, ECG measurements were
conducted. The participants were eight Japanese males (aged 23.0 ± 1.0 yr),
and each participant performed the experiment five times. This study
was approved by the Ethics Committee for Human Research at Saitama
University (R5-E-4), and written informed consent was obtained from all
participants.

The experimental environment and protocol are shown in Figures 1
and 2, respectively. For the ECGmeasurements, a multichannel physiological
measurement device, the Web-1000 (Nihon Koden Corporation) was used
with a sampling frequency of 1 kHz. During the experiment, participants
were seated 0.5 m away from the monitor, and input was standardized such
that it could be provided using only the dominant hand on a numeric keypad.

The experiment consisted of three phases: task practice, a 5 min pre-
rest period, and a 20 min task session. Task practice was conducted to
eliminate the effects of becoming accustomed to using a numeric keypad
and performing the task. During the practice, participants were instructed to
“Continue until the task speed becomes constant” to ensure that they could
perform the task at a stable pace. After practice, a 5 min pre-rest period was
provided, and this was followed by a 20 min continuous additional task. To
avoid influencing the participants’ perception of time, the task duration was
not disclosed.

The continuous addition task used in this experiment is illustrated in Fig. 3.
In this task, participants calculated the sum of two adjacent numbers from a
randomly displayed sequence on the screen and entered the last digit of the
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sum using a numeric keypad. This task followed the format of the original
Kraepelin test, with a new sequence displayed every minute, regardless of the
number of answers provided. Additionally, the bottom of the task screen
displayed the following instruction: “Enter the value of the sum of the
number at the upper right of the ‘_’ and the number at the upper left. Answers
cannot be corrected.”

Figure 1: Experimental environment.

Figure 2: Experimental protocol.

Figure 3: Task image.
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INTELLECTUAL PRODUCTIVITY ESTIMATION MODEL

The structure of the model is illustrated in Fig. 4. In this model, ECG data
obtained at 1 kHz were used as explanatory variables, and the data were
resampled to 128 Hz to enable the extraction of the RR intervals (RRI). In
this study, intellectual productivity was defined as the amount of output per
unit of time, and the number of correct answers in the continuous addition
task over a 30 s period was used as the objective variable for the model. Each
variable was obtained using a 30 s time window, and data were acquired by
shifting the frame by 1 s throughout the task period. A total of 5,855 data
points per participant were obtained over the course of the five experiments.
Additionally, standardization was applied to both the input and output data
to standardize the scales of the variables.

To split the data into training, validation, and test datasets, a k-fold
cross-validation method (k = 3) was employed. The data were divided
into training (53.3%), validation (26.7%), and testing (20%) datasets.
The validation data were used for hyperparameter tuning and overfitting
detection.

This regression model estimates intellectual productivity by extracting
features from ECG data using a CNN and inputting these features into fully
connected layers. ReLU functions were used as the activation functions for
both the convolutional and fully connected layers, whereas a linear function
was used for the output layer. Batch normalization was applied to the outputs
of each convolutional and fully connected layer to stabilize and accelerate
learning. Additionally, dropout was applied after the fully connected layers
with a probability of 0.5 to prevent overfitting and enhance the generalization
performance of the model.

Figure 4: Machine learning model shape.
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The Huber loss was used as the loss function in this model. The Huber
loss combines the advantages of the mean squared error (MSE) and mean
absolute error (MAE). The learning rate was adjusted from 0.0005 to 0.0001
using the ReduceLROnPlateau, which monitors the behavior of the loss
function and lowers the learning rate when the loss does not decrease. In
this model, if the loss did not decrease over 20 epochs, then the learning rate
was reduced to 20% of the previous value. The number of epochs was set
to 200.

The MAPE and R2 were used as metrics to evaluate the test data. The
MAPE indicates the percentage of prediction errors. In this study, two types
of models were constructed, namely, individual models for each participant
and an overall model using data from all participants, and their performances
were compared.

RESULTS

The learning results of the model are as follows. In the individual and overall
models, the values of the loss function for the training and validation data
were stable at the final epoch, indicating that the learning process converged
and that the model training was successful.

Next, the individual and overall models were compared. For the overall
model, all the data from each participant were used as test data, and
the evaluation metrics were calculated. A paired t-test was conducted
on the evaluation metrics obtained from the individual and overall models.
The results of this t-test are shown in Figures 5 and 6. For the MAPE,
the individual models were significantly lower at the 1% significance level.
Moreover, for R2, the individual models were significantly higher at the
5% significance level. The MAPE results indicate that the individual models
provided more accurate estimations than did the overall model. Additionally,
the R2 value showed that the individual models had higher explanatory
power than did the overall model.

The evaluation metrics for the individual models are listed in Table 1.
According to the MAPE and R2 for each participant, the individual models
achieved medium to high accuracy in estimating intellectual productivity.

Table 1: Evaluation of the test data of the experimental
participants.

Participants MAPE [%] R2 score [-]

A 15.1 0.426
B 8.63 0.665
C 3.88 0.712
D 8.05 0.555
E 3.99 0.806
F 4.27 0.775
G 3.52 0.729
H 5.95 0.742
Mean 6.67 0.676
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Figure 5: MAPE paired t-test results.

Figure 6: R2 paired t-test results.

DISCUSSION

These results suggest that it is possible to estimate intellectual productivity on
an individual basis using electrocardiography. These results can be explained
by the Yerkes–Dodson law (Yerkes and Dodson, 1908).

The Yerkes–Dodson law states that performance improves at an optimal
level of arousal and decreases in states of low arousal, such as drowsiness
and fatigue, and high arousal, such as excitement and tension. However, for
simple tasks, higher levels of arousal can enhance performance.

Furthermore, autonomic nervous system activity can be used to evaluate
arousal levels. Heart rate variability (HRV) reflects the balance between
the sympathetic and parasympathetic nervous systems and is useful for
evaluating arousal levels. Among the HRV indices, the RR interval is an
important indicator for assessing autonomic nervous activity. The root mean
square of successive differences (RMSSD), which is calculated as the square
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root of the mean squared differences between adjacent RR intervals, reflects
parasympathetic nervous activity. Moreover, the standard deviation of NN
intervals (SDNN), which is the standard deviation of RR intervals, reflects
the influences of both the sympathetic and parasympathetic nervous systems.

In the developed model, the characteristics of autonomic nervous
activity were captured from these electrocardiographic properties, which
made it possible to clarify arousal levels and estimate intellectual
productivity.

The difficulty of estimating using the overall model is attributable to
the significant impact of individual differences on intellectual productivity.
In this study, the level of intellectual productivity varied greatly among
individuals, leading to cases in which high performance for one person was
low performance for another. This variation makes estimation using uniform
standards difficult.

Furthermore, individual differences in cardiac activity exist during various
tasks (Miyake, 2022). According to previous research, there are two types
of individuals who respond to mental arithmetic tasks: cardiac responders,
who exhibit an increase in heart rate, and vascular responders, who exhibit a
decrease in heart rate. These individual differences make it difficult to achieve
consistent estimation using an overall model, which hinders the estimation
of intellectual productivity for each individual.

Hence, a model that considers individual characteristics when estimating
future intellectual productivity must be constructed.

CONCLUSION

This study aimed to estimate intellectual productivity during computational
tasks with cognitive load using ECG data, and an intellectual productivity
estimation model was created for a continuous addition task. The
experimental results suggest that the intellectual productivity of each
individual can be estimated using ECG data. These outcomes may have
resulted from the created model capturing individual arousal levels from the
ECG data. In the future, a system to enhance intellectual productivity will
be developed and evaluated after examining whether the model developed in
this study contributes to the improvement of intellectual productivity.
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