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ABSTRACT

This paper presents a novel approach to adaptive robotic gripping by integrating
force-sensitive resistors (FSRs) into a three-fingered robotic gripper fabricated using
TPU 95A and PLA. The proposed methodology extends prior research on vision-
based object classification and incorporates force-sensitive feedback for dynamic grip
adjustment. By calibrating FSR strips and deriving force-voltage equations, we have
developed a gripping mechanism that dynamically adjusts its pressure based on object
characteristics. The force thresholds and minimum and maximum gripper pressures
have been empirically determined through experimentation. This research provides
a practical and scalable solution for adaptive robotic gripping, with applications in
industrial automation and assistive robotics.
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INTRODUCTION

Robotic grippers play a crucial role in industrial and assistive robotics,
enabling precise object manipulation. Traditional gripping mechanisms rely
on pre-set parameters or static force application, which limits adaptability
in unstructured environments. Recent advancements in machine learning
have allowed robots to classify objects visually, but real-time grip adjustment
remains an open challenge.

Building on prior research presented at AHFE 2024Hawaii, which utilized
ResNet50 for vision-based classification of hard and soft objects, this study
introduces a force-sensitive gripping system. The three-finger robotic gripper,
fabricated using TPU 95A for flexibility and PLA for structural rigidity,
is integrated with FSR strips to enable dynamic pressure adjustment. The
objective is to enhance grasp stability by using feedback from the FSRs to
control grip strength.

The core contribution of this work lies in integrating Force Sensitive
Resistors (FSRs) into the robotic gripper design to facilitate real-time pressure
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sensing and generate feedback. These sensors are strategically placed on the
gripper’s contact surfaces to capture precise pressure data during gripping.
This feedback, combined with the classification result, ensures the gripper
dynamically adjusts its force in real time to handle a wide range of objects,
including fragile items such as glass, compressible objects like cushions and
rigid heavy objects like steel mugs.

This research bridges the gap between machine learning models and real-
world robotic applications, demonstrating how object classification can
cause dynamic interactions with physical environment.

BACKGROUND OF THE RESEARCH AND RELATED WORKS

Previously we have developed a TensorFlow based deep learning model that
has been trained using the ResNet50 architecture (a pre-trained model which
has been trained on the ImageNet dataset). This model was used on the
CIFAR 100 dataset which was divided into 50,000 training images and
10,000 validation or test images. The images obtained from CIFAR 100 were
normalised to aid in speeding up the convergence of the model training and
this also helped improve the training and validation accuracy.

The TensorFlow model was able to classify the images of the CIFAR
100 dataset into hard and soft objects with an impressive accuracy of
83% for the training dataset and 80.25% for the validation dataset.
The details of the research are available on the paper by Diptesh et al.
(2024) titled, “Advancing Vision-based Adaptive Gripping Technology with
Machine Learning: Leveraging Pre-trained Models for Enhanced Object
Classification”.

Similar works on the topic related to robotic gripping have been carried out
by Calandra et al. (2018) who developed a deep learning model that utilised
tactile data to predict grasp outcomes which in turn enabled a robotic hand
to identify objects and adjust its grip. Li et al. (2020) in their paper “Design
and performance characterization of a soft robot hand with fingertip haptic
feedback for teleoperation” emphasised on fingertip haptic feedback thus
relying extensively on tactile or sensor output only. While these studies have
been able to innovatively capture the idea of adaptive gripping on one hand,
it also brings us to a critical conclusion that these ideas are filled with sensor
intensive operations that leads to complexities in build up and operation often
limiting the use of such robots in scenarios where sensory input is restricted.

This study stands out by emphasizing the use of visual data for
object classification. Unlike tactile sensors, visual data enables information
gathering from a distance, simplifies hardware requirements, and seamlessly
integrates with existing computer vision systems. Several studies have
investigated the application of FSR sensors in robotics. However, few studies
have implemented real-time dynamic adjustments based on measured force
thresholds. This paper builds upon prior research by proposing a novel
approach that combines FSR calibration, adaptive control, and real-time
feedback to improve robotic gripping performance.

The ability of robotic systems to autonomously adjust their grip without
continuous human intervention or extensive reprogramming marks a
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significant advancement. This research demonstrates how visual data and
machine learning algorithms can enhance robotic autonomy and versatility,
reducing reliance on human operators while improving efficiency. The
proposed approach offers a scalable solution applicable across multiple
industries, contributing to safer, more reliable, and highly effective robotic
systems in diverse operational environments.

METHODOLOGY

Building a 3 Fingered Robotic Gripper

The development of a three-fingered robotic gripper involved designing a
precise CAD model using Autodesk Fusion 360, ensuring an optimal balance
between mechanical strength and flexibility. The gripper comprises a rigid
wrist structure fabricated from PLA,providing a stable base formounting and
actuation, while the fingers are printed using TPU 95A to allow controlled
compliance and deformation for adaptive gripping.

Figure 1: The robotic gripper (fingers made of TPU & parts of the wrist made of PLA).

The CADmodel was exported in STL format and processed in IdeaMaker;
the slicing software optimized for the Raise3D Pro 2 printer. Key slicing
parameters for PLA included a 0.2mm layer height, 20% infill, and support
structures, ensuring structural integrity. For TPU 95A, special considerations
were made, including slower print speeds (20 mm/s), retraction disabled,
and travel optimization, preventing extrusion issues common with flexible
filaments.

Printing was conducted separately for the wrist and fingers, ensuring
accurate dimensional tolerances for seamless assembly. A N95 DC geared
motor was suitably placed at the intersection of the 3 fingers which is being
used to control the opening and closing of the gripper fingers.
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Force Sensitive Resistor (FSR) Calibration Process

The accuracy of force measurements using Force Sensitive Resistor (FSR)
sensors is highly dependent on proper calibration. Calibration ensures that
the sensor provides reliable and repeatable measurements, allowing for
precise force estimation during gripping operations.

Figure 2: Voltage divider circuit used for calibration of the force sensitive resistor.

To achieve this, the FSR sensors were calibrated using a Weight vs. Voltage
dataset, to establish a direct relationship between applied force and sensor
output.

Calibration Procedure

1. Experimental Setup:

a. The FSR sensors were mounted on a stable, flat surface to ensure
consistent contact with applied weights.

b. A microcontroller (Arduino UNO) was used to supply a regulated
5V input to the sensor circuit and read the corresponding analog
voltage output.

2. Weight Application and Data Collection:

a. A series of known weights, ranging from light to heavy, were placed
incrementally on the sensor surface.

b. The voltage output corresponding to each weight was recorded in
real time.

Curve Fitting and Derivation of Equation for Force vs Voltage

The voltage output from the FSR corresponding to the application of the
known weights was carefully observed. The trend showed saturation after a
certain volatge level was reached corresponding to application of weights.We
used a polynomial regression or power-law curve fitting approach to develop
an empirical equation that accurately models the force response of the sensor.

The values obtained from our experiment cited in Figure 3 below were
used to calculate the relationship between Force and Voltage by fitting a third
order polynomial of the nature:

F(V) = AV3
+ BV2

+ CV +D
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Figure 3: Table showing relationship between weight and voltage for a part of the
values (first 5 and last 5) obtained from the experiment.

Figure 4: Weight vs voltage plot as read from the experiment for calibration of FSR.

The calculation was done using python coding and the resulting
polynomial expression is expressed as:

F(V) = 1.74793V3
−10.9256V2

+22.9552V−14.9361
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Figure 5: Graphical representation of the 3rd order polynomial equation for force vs
voltage.

Figure 6: Python code snippet for calculation of relation between force and voltage.

This polynomial equation allows force values to be estimated from voltage
readings, ensuring accurate force measurement during gripping operations.
Multiple trials were conducted to validate the consistency of the calibration
equation and minimize sensor drift errors.
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Validation and Error Analysis

We ran a Root Mean Square (RMS) error check operation on the predicted
values of the force versus the actual values of force applied on the Force
sensitive resistor (FSR).RMS error tells us, on an average howmanyNewtons
away is our 3rd order polynomial prediction from the actual measured forces.
It is widely accepted that a RMS error anywhere below ∼0.25 N is typically
good for an FSR based fit over a broad force range.

Figure 7: RMS error as obtained from our python code snippet is 0.2334.

The RMS error between the 3rd order polynomial fit and the actual values
of forces is 0.2334 which is well within the accepted range of 0.25.

Experimental Observations and Force Threshold Determination

During the experimentation phase, it was observed that the Force Sensitive
Resistor (FSR) strips exhibit a non-linear response to applied force,
particularly at very low and very high, pressure levels. The FSRs do not
generate an immediate voltage output upon initial contact but require a
minimum threshold force before registering a measurable voltage response.
This characteristic was carefully considered when determining the lower
threshold pressure required for object gripping.

Given that the FSRs are mounted on the fingertips of the robotic
gripper fabricated using TPU 95A premium material, an inherent material
deformation occurs prior to force transmission to the FSRs. TPU 95A,
being a flexible and compliant material, undergoes initial deformation under
applied force, resulting in a delay before sufficient force is exerted on the
FSR to generate a detectable voltage reading on the Arduino serial monitor.
Consequently, the point at which the first measurable voltage is recorded
during the gripping process is identified as the lower benchmark pressure
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threshold. This value represents the minimum amount of pressure required
to establish initial contact with an object but does not necessarily ensure a
stable grasp.

Following the initial detection of a voltage response, the gripping process
continues with increasing pressure exerted by the N95 DC geared motor
driving the gripper fingers. As the applied normal force increases, the
corresponding voltage readings on the serial monitor also increase, reflecting
the rising reaction force experienced by the FSR. This trend continues until
the voltage readings exhibit saturation, indicating that further increments in
gripping force yield negligible increases in voltage output. This saturation
point is considered the maximum pressure threshold, representing the upper
limit of the gripping force necessary to secure an object firmly.

The force corresponding to both the lower and upper pressure thresholds
has been quantified using the previously derived mathematical equation that
establishes the relationship between voltage and force. These experimentally
determined thresholds provide critical insights into the dynamic gripping
behaviour of the robotic gripper and ensure optimal force regulation for
different object categories. By leveraging this information, the gripper can
adaptively modulate its gripping force to prevent excessive deformation of
soft objects while ensuring secure handling of rigid objects.

RESULTS AND DISCUSSION

We put to test over 70 small objects that we encounter in our daily lives and
noted down the Voltage values as observed on the Arduino serial monitor.
The method of experimentation was the same as has been described above
in the previous section before. It is worthwhile to mention here that since the
power source is 5 Volts and we are using a 10-bit ADC (it has 1024 levels
from 0 to 1023) the ADC value has been arrived at by using the equation
below:

ADC Value =
(

Voltage Input
Reference Voltage

)
× 1023

We have mentioned only a few items in the table above due to paucity of
space although the representative categories have been covered.

Figure 8: Experimentation results for few of the objects which were put to test (values
of Fcalc are per finger and in Newton).
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It is clearly observed that the values for maximum threshold force being
applied in case of hard and soft objects follow an observable trend with
the ADCmax values being on the higher side for hard objects as compared
to that of the soft objects. However, when we see the ADCmin values we
observe that the trend is opposite with the soft objects exhibiting a higher
ADCmin as compared to the hard objects. On detailed inspection it is also
noted that the ADCmin values for the plush toy and dishwasher sponge are
higher than that of the rubber ball. It is hereby concluded that the objects
like plush toy or the sponge are extremely compressible in nature and hence
require a substantial amount of gripping force before the FSRs mounted on
the fingers can sense the normal reaction force and send voltage readings to
the Arduino serial monitor. This is not the case with incompressible harder
objects where the normal reaction force is easily sensed by the FSRs. We also
conclude that the values of ADCmax serve as good benchmarks to implement
the concept of adaptive gripping by classifying objects as hard and soft.
We have observed that the ADCmax values for soft objects are less than
725 while that of hard objects are greater than 750. This logic has been
drafted into an Arduino algorithm combined with the algorithm from the
previous research paper by Diptesh et al. (2024) titled, “Advancing Vision-
based Adaptive Gripping Technology with Machine Learning: Leveraging
Pre-trained Models for Enhanced Object Classification” to implement the
concept of adaptive gripping the model architecture for which has been laid
out in Figure 9.

Figure 9: Final model architecture combining the TensorFlow model and the Arduino
bridge code.
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Figure 10: Arduino IDE code to implement adaptive gripping.

CONCLUSION

The results of this study highlight the potential of this approach in improving
robotic gripping strategies for a range of application. Our study has been
limited to distinguishing between hard and soft objects only but there lies
a huge scope in the future to extend this study to moderately soft, fragile,
incompressible and semi-hard objects by further categorising the ADC values
obtained from the voltage readings of the Force Sensitive Resistors (FSRs).
The findings of this study contribute to the ongoing advancement of adaptive
robotic manipulation, providing a foundation for further innovations in
robotic grasping technology.
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